Recent work has shown that monolithic integration of voltage regulators will be feasible in the near future, enabling reduced system cost and the potential for fine-grain voltage scaling (FGVS). More specifically, on-chip switched-capacitor regulators appear to offer an attractive trade-off in terms of integration complexity, power density, power efficiency, and response time. In this paper, we use architecture-level modeling to explore a new dynamic voltage/frequency scaling controller called the fine-grain synchronization controller (FG-SYNC+). FG-SYNC+ enables improved performance and energy efficiency at similar average power for multithreaded applications with activity imbalance. We then use circuit-level modeling to explore various approaches to organizing on-chip voltage regulation, including a new approach called reconfigurable power distribution networks (RPDNs). RPDNs allow one regulator to "borrow" energy storage from regulators associated with underutilized cores resulting in improved area/power efficiency and faster response times. We evaluate FG-SYNC+ and RPDN using a vertically integrated research methodology, and our results demonstrate a 10-50% performance and 10-70% energy-efficiency improvement on the majority of the applications studied compared to no FGVS, yet RPDN uses 40% less area compared to a more traditional per-core regulation scheme.
Amdahl's law provides architects a compelling reason to introduce system asymmetry to optimize for both serial and parallel regions of execution. Asymmetry in a multicore processor can arise statically (e.g., from core microarchitecture) or dynamically (e.g., applying dynamic voltage/frequency scaling). Work stealing is an increasingly popular approach to task distribution that elegantly balances task-based parallelism across multiple worker threads. In this paper, we propose asymmetry-aware work-stealing (AAWS) runtimes, which are carefully designed to exploit both the static and dynamic asymmetry in modern systems. AAWS runtimes use three key hardware/software techniques: work-pacing, work-sprinting, and work-mugging. Work-pacing and work-sprinting are novel techniques that combine a marginal-utility-based approach with integrated voltage regulators to improve performance and energy efficiency in high- and low-parallel regions. Work-mugging is a previously proposed technique that enables a waiting big core to preemptively migrate work from a busy little core. We propose a simple implementation of work-mugging based on lightweight user-level interrupts. We use a vertically integrated research methodology spanning software, architecture, and VLSI to make the case that holistically combining static asymmetry, dynamic asymmetry, and work-stealing runtimes can improve both performance and energy efficiency in future multicore systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.