In this report, we have examined the mechanisms whereby neurotrophins and neural activity coordinately regulate neuronal survival, focussing on sympathetic neurons, which require target-derived NGF and neural activity for survival during development. When sympathetic neurons were maintained in suboptimal concentrations of NGF, coincident depolarization with concentrations of KCl that on their own had no survival effect, synergistically enhanced survival. Biochemical analysis revealed that depolarization was sufficient to activate a Ras-phosphatidylinositol 3-kinase–Akt pathway (Ras–PI3-kinase–Akt), and function-blocking experiments using recombinant adenovirus indicated that this pathway was essential for ∼50% of depolarization-mediated neuronal survival. At concentrations of NGF and KCl that promoted synergistic survival, these two stimuli converged to promote increased PI3-kinase–dependent Akt phosphorylation. This convergent PI3-kinase–Akt pathway was essential for synergistic survival. In contrast, inhibition of calcium/calmodulin-dependent protein kinase II revealed that, while this molecule was essential for depolarization-induced survival, it had no role in KCl- induced Akt phosphorylation, nor was it important for synergistic survival by NGF and KCl. Thus, NGF and depolarization together mediate survival of sympathetic neurons via intracellular convergence on a Ras–PI3-kinase–Akt pathway. This convergent regulation of Akt may provide a general mechanism for coordinating the effects of growth factors and neural activity on neuronal survival throughout the nervous system.
Chromosome condensation at mitosis correlates with the activation of p34cdc2 kinase, the hyperphosphorylation of histone H1 and the phosphorylation of histone H3. Chromosome condensation can also be induced by treating interphase cells with the protein phosphatase 1 and 2A inhibitors okadaic acid and fostriecin. Mouse mammary tumour FT210 cells grow normally at 32 degrees C, but at 39 degrees C they lose p34cdc2 kinase activity and arrest in G2 because of a temperature‐sensitive lesion in the cdc2 gene. The treatment of these G2‐arrested FT210 cells with fostriecin or okadaic acid resulted in full chromosome condensation in the absence of p34cdc2 kinase activity or histone H1 hyperphosphorylation. However, phosphorylation of histones H2A and H3 was strongly stimulated, partly through inhibition of histone H2A and H3 phosphatases, and cyclins A and B were degraded. The cells were unable to complete mitosis and divide. In the presence of the protein kinase inhibitor starosporine, the addition of fostriecin did not induce histone phosphorylation and chromosome condensation. The results show that chromosome condensation can take place without either the histone H1 hyperphosphorylation or the p34cdc2 kinase activity normally associated with mitosis, although it requires a staurosporine‐sensitive protein kinase activity. The results further suggest that protein phosphatases 1 and 2A may be important in regulating chromosome condensation by restricting the level of histone phosphorylation during interphase, thereby preventing premature chromosome condensation.
In an effort to improve the activities and bioavailabilities of stromal cell-derived factor-1 (SDF-1, CXCL12) sdf-(1-67)-OH (1), we have prepared a linear peptide analogue [sdf-(1-31)-NH(2) (2)] and two lactam analogues [cyclo(Lys(20)-Glu(24))-sdf-(1-31)-NH(2) (3) and cyclo(Glu(24)-Lys(28))-sdf-(1-31)-NH(2) (4)], consisting of the N-terminal region (amino acids 1-14) joined by a four-glycine linker to the C-terminal region (amino acids 56-67) of 1. Analogues 2 and 4 had eight residues of alpha-helix, as estimated from its circular dichroism (CD) spectra, in contrast to 10 residues in analogue 3. Cyclization of analogue 2 at residues 20 and 24 to give analogue 3 resulted in only a slight change to the theta;(222)/theta;(209) ratio (0.81 to 0.86, where 1.09 is considered a perfect alpha-helix), although an increase in the alpha-helix length of analogue 3 was observed. In contrast, cyclization between residues 24 and 28 by lactamization to give analogue 4 only slightly affected the helical content but clearly resulted in a more classical alpha-helical structure (theta;(222)/theta;(209) = 0.98). Cyclization of the linear analogue 2 enhanced the SDF-1 receptor CXCR4 binding approximately 114-fold, where the IC(50) values derived from (125)I-SDF-1 competitive binding assays with CEM cells were found to be 39.5 +/- 5.9 nM, 28.9 +/- 6.3 microM, 225.8 +/- 11.8 nM, and 254.1 +/- 5.4 nM for analogues 1-4, respectively. Intracellular calcium mobilization ([Ca(2+)](i)) induced after interaction with CXCR4, as measured by EC(50), was significantly reduced in analogue 4 compared to 3, and approached the EC(50) of native SDF-1, indicating a correlation between the degree of alpha-helix and biological activity. Therefore, the biological activity of small peptide SDF-1 analogues is highly dependent on the conformation of its C-terminal region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.