We report the development of a magnetic tweezers that can be used to micromanipulate single DNA molecules by applying picoNewton (pN)-scale forces in the horizontal plane. The resulting force–extension data from our experiments show high-resolution detection of changes in the DNA tether’s extension: ~0.5 pN in the force and <10 nm change in extension. We calibrate our instrument using multiple orthogonal techniques including the well-characterized DNA overstretching transition. We also quantify the repeatability of force and extension measurements, and present data on the behavior of the overstretching transition under varying salt conditions. The design and experimental protocols are described in detail, which should enable straightforward reproduction of the tweezers.
We report the development of a simple-to-implement magnetic force transducer that can apply a wide range of piconewton (pN) scale forces on single DNA molecules and DNA–protein complexes in the horizontal plane. The resulting low-noise force-extension data enable very high-resolution detection of changes in the DNA tether’s extension: ~0.05 pN in force and <10 nm change in extension. We have also verified that we can manipulate DNA in near equilibrium conditions through the wide range of forces by ramping the force from low to high and back again, and observing minimal hysteresis in the molecule’s force response. Using a calibration technique based on Stokes’ drag law, we have confirmed our force measurements from DNA force-extension experiments obtained using the fluctuation-dissipation theorem applied to transverse fluctuations of the magnetic microsphere. We present data on the force-distance characteristics of a DNA molecule complexed with histones. The results illustrate how the tweezers can be used to study DNA binding proteins at the single molecule level.
We report data from single molecule studies on the interaction between single DNA molecules and core histones using custom-designed horizontal magnetic tweezers. The DNA-core histone complexes were formed using λ-DNA tethers, core histones, and NAP1 and were exposed to forces ranging from ~2 pN to ~74 pN. During the assembly events, we observed the length of the DNA decrease in approximate integer multiples of ~50 nm, suggesting the binding of the histone octamers to the DNA tether. During the mechanically induced disassembly events, we observed disruption lengths in approximate integer multiples of ~50 nm, suggesting the unbinding of one or more octamers from the DNA tether. We also observed histone octamer unbinding events at forces as low as ~2 pN. Our horizontal magnetic tweezers yielded high-resolution, low-noise data on force-mediated DNA-core histone assembly and disassembly processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.