In order to address the challenge of increasing data rates, next generation optical communication networks will require the co-integration of electronics and photonics. Heterogeneous integration of these technologies has shown promise, but will eventually become bandwidth limited. Faster monolithic approaches will, therefore, be needed, but monolithic approaches using complementary metal-oxide-semiconductor (CMOS) electronics and silicon photonics are typically limited by their underlying electronic or photonic technologies. Here, we report a monolithically integrated electro-optical transmitter that can achieve symbol rates beyond 100 GBd. Our approach combines advanced bipolar CMOS with silicon plasmonics, and addresses key challenges in monolithic integration through the co-design of the electronic and plasmonic layers, including thermal design, packaging, and a nonlinear organic electro-optic material. To illustrate the potential of our technology, we develop two modulator conceptsan ultra-compact plasmonic modulator and, alternatively, a silicon-plasmonic modulator with photonic routing -both directly processed onto the bipolar CMOS electronics.
A facile method for generation of tumor spheroids in large quantity with controllable size and high uniformity is presented. HCT-116 cells are used as a model cell line. Individual tumor cells are sparsely seeded onto petri-dishes. After a few days of growth, separated cellular islets are formed and then detached by dispase while maintaining their sheet shape. These detached cell sheets are transferred to dispase-doped media under orbital shaking conditions. Assisted by the shear flow under shaking and inhibition of cell-to-extracellular matrix junctions by dispase, the cell sheets curl up and eventually tumor spheroids are formed. The average size of the spheroids can be controlled by tuning the cell sheet culturing period and spheroid shaking period. The uniformity can be controlled by a set of sieves which were home-made using stainless steel meshes. Since this method is based on simple petri-dish cell culturing and shaking, it is rather facile for forming tumor spheroids with no theoretical quantity limit. This method has been used to form HeLa, A431 and U87 MG tumor spheroids and application of the formed tumor spheroids in drug screening is also demonstrated. The viability, 3D structure, and necrosis of the spheroids are characterized.
A wavy-herringbone (wavy-HB) structured microfluidic device was used to effectively and selectively capture and release circulating tumor cells (CTCs) by using immunoaffinity and magnetic force. This device was designed to create passive turbulence and increase the possibility of tumor cells colliding with the device wall. Under an external magnetic field, magnetic particles (MPs) coated with anti-EpCAM against a tumor cell surface protein (EpCAM) were immobilized over the wavy-HB surface to capture tumor cells. After removing the magnetic field, the captured cells with surplus MPs were released from the device and collected; thus, these cells could be re-cultured for further analysis. Under optimized conditions, the capture efficiency of the tumor cells can be as high as 92% ± 2.8%. Capture experiments were also performed on whole blood samples, and the capture efficiency was in a high range of 81-95%, at different tumor cell concentrations. Such a method can potentially be used for CTC sorting from patient blood samples, CTC concentration monitoring, therapeutic guidance and drug dosage choice, and further study of tumors, such as drug screening and tumor mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.