When laboratory-measured chemical reaction rates are used in simulations at the field-scale, the models typically overpredict the apparent reaction rates. The discrepancy is primarily due to poorer mixing of chemically distinct waters at the larger scale. As a result, realistic field-scale predictions require accurate simulation of the degree of mixing between fluids. The Lagrangian particle-tracking (PT) method is a now-standard way to simulate the transport of conservative or sorbing solutes. The method's main advantage is the absence of numerical dispersion (and its artificial mixing) when simulating advection. New algorithms allow particles of different species to interact in nonlinear (e.g., bimolecular) reactions. Therefore, the PT methods hold a promise of more accurate field-scale simulation of reactive transport because they eliminate the masking effects of spurious mixing due to advection errors inherent in grid-based methods. A hypothetical field-scale reaction scenario
Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a threedimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
The long‐term evaluation of regional‐scale groundwater quality needs efficient upscaling methods for transient flow. Upscaling techniques, such as the Multirate Mass Transfer (MRMT) method with constant upscaling parameters, have been used for transport with steady‐state flow, yet the upscaling parameters (i.e., rate coefficients) may be time dependent. This study proposed and validated an adaptive MRMT (aMMT) method by allowing the mass transfer coefficients in MRMT to change with the flow field. Advective‐dispersive contaminant transport simulated in a 3‐D heterogeneous medium was used as a reference solution. Equivalent transport under homogeneous flow conditions was evaluated by applying the MRMT and aMMT models for upscaling. The relationship between mass transfer coefficients and flow rates was fitted under steady‐state flow driven by various hydraulic gradients. A power law relationship was obtained, which was then used to update the mass transfer coefficients in each stress period under transient flow conditions in the aMMT method. Results indicated that for advection‐dominated transport, both the MRMT and aMMT methods can upscale the anomalous transport dynamics affected by subgrid heterogeneity under transient flow conditions. Whereas for diffusion‐dominated systems, the MRMT model failed to capture the tails of tracer breakthrough curves after the boundary condition changed, but the results from the aMMT model were significantly improved. However, if the overall flow direction changed, both MRMT and aMMT failed to represent the breakthrough curve tail generated by the heterogeneous system. The results point toward a promising path for upscaling transport in complex aquifers with transient flow.
Regional scale transport models are needed to support the long‐term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of a previously developed upscaling approach to adequately describe the main solute transport processes, including the capture of late‐time tails under changing boundary conditions. Potential factors that impact the performance of upscaling methods, including temporal variations in mass transfer rates and mass distributions, were investigated. Advective‐dispersive contaminant transport in a 3‐D heterogeneous domain was simulated and used as a reference solution. The equivalent transport under homogeneous flow conditions was then evaluated by applying the multirate mass transfer (MRMT) model. The random walk particle tracking method was used to solve the solute transport for heterogeneous and homogeneous MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plumes transported with ambient steady state flow fields at all studied scales using the same parameters. However, when the boundary conditions change in either local, plume, or regional scale, the mass transfer model calibrated for transport under steady state conditions cannot accurately reproduce the tailings observed for the heterogeneous scenario. The deteriorating impacts of transient boundary conditions on the upscaled model are more significant for regions where the flow fields are dramatically affected, which highlights the poor applicability of the MRMT approach for complex field settings. This finding also has implications for the suitability of other potential upscaling approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.