3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (−0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (−0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.
Oxygen vacancies (OVs) dominate the physical and chemical properties of metal oxides, which play crucial roles in the various fields of applications. Density functional theory calculations show the introduction of OVs in TiO2(B) gives rise to better electrical conductivity and lower energy barrier of sodiation. Here, OVs evoked blue TiO2(B) (termed as B‐TiO2(B)) nanobelts are successfully designed upon the basis of electronically coupled conductive polymers to TiO2, which is confirmed by electron paramagnetic resonance and X‐ray photoelectron spectroscopy. The superiorities of OVs with the aid of carbon encapsulation lead to higher capacity (210.5 mAh g−1 (B‐TiO2(B)) vs 102.7 mAh g−1 (W‐TiO2(B)) at 0.5 C) and remarkable long‐term cyclability (the retention of 94.4% at a high rate of 10 C after 5000 times). In situ X‐ray diffractometer analysis spectra also confirm that an enlarged interlayer spacing stimulated by OVs is beneficial to accommodate insertion and removal of sodium ions to accelerate storage kinetics and preserve its original crystal structure. The work highlights that injecting OVs into metal oxides along with carbon coating is an effective strategy for improving capacity and cyclability performances in other metal oxide based electrochemical energy systems.
Herein, we report a complete additively manufactured (AM) electrochemical sensing platform. In this approach, a fully AM/3D-printed electrochemical system, using a conventional low-cost 3D printer (fused deposition modeling) fabricating both the conductive electrodes and the nonconductive/chemically inert electrochemical cell is reported. The electrodes (working, counter, and pseudo-reference) are AM using a conductive fused-filament comprised of a mixture of carbon black nanoparticles and polylactic acid (CB/PLA). AM components partially coated with silver ink presented a similar behavior to a conventional Ag/AgCl reference electrode. The performance of the AM working electrode was evaluated after a simple and fast polishing procedure on sandpaper and electrochemical activation in a NaOH solution (0.5 mol L–1). Following the electrochemical activation step, a considerable improvement in the electrochemical behavior (current intensity and voltammetric profile) was obtained for model analytes, such as dopamine, hexaammineruthenium(III) chloride, ferricyanide/ferrocyanide, uric acid, and ascorbic acid. Excellent repeatability (RSD = 0.4%, N = 10) and limit of detection (0.1 μmol L–1) were obtained with the all complete AM electrochemical system for dopamine analysis. The electrochemical performance of the developed system (after simple electrochemical activation of the working electrode) was similar or better than those obtained using commercial glassy carbon and screen-printed carbon electrodes. The results shown here represents a significant advance in AM (3D printing) technology for analytical chemistry.
Carbon dots inducing petal-like rutile TiO wrapped by ultrathin graphene-rich layers are proposed to fabricate superior anodes for sodium-ion batteries, featuring high-rate capabilities and long-term cyclelife, benefiting from promoted electron transport and a shortened Na diffusion length. High capacities of 144.4 mA h g (at 837.5 mA g ) after 1100 cycles and 74.6 mA h g (at 3350 mA g ) after 4000 cycles are delivered outstandingly.
Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.