The purpose of this study was to examine muscle activity patterns during patient handling during manual transfers, and transfers using floor and ceiling lifts. EMG patterns during transfers from bed to wheelchair and wheelchair to bed as well as patient repositioning in novices and experienced participants were examined. Surface EMG was recorded from the upper and lower erector spinae, latissimus dorsi and trapezius muscles bilaterally. Overall, normalized mean and peak muscle activity were lowest using the ceiling lift, increasing with the floor lift, which were lower than manual transfers (novices: all p < 0.01). Experienced patient handlers demonstrated approximately two times greater trapezius and latissimus dorsi activity than novices, combined with lower mean erector spinae activity (p < 0.05, for most tasks). Integrated EMG for all muscles was directly proportional to the transfer time and was lowest during the manual transfer followed by the ceiling lift, with the floor lift being highest. The difference between the muscle activity patterns between the experienced and novice patient handlers may suggest a learned behaviour to protect the spine by distributing load to the shoulder. Further examination of the muscle activation patterns differences between experience levels could improve training techniques to develop better patient handling strategies.
The purpose of this study was to examine the interfering effects of physical and mental tasks on shoulder isometric strength in different postures. Fifteen volunteers (seven women, eight men) performed a series of isometric shoulder exertions at 30 degrees , 60 degrees and 90 degrees of both shoulder flexion and abduction alone and with the addition of a 30% grip force, a mental task (Stroop test) and both additional tasks simultaneously. The shoulder tasks were completed either at maximal intensity, or while maintaining a shoulder posture without any additional effort. Surface electromyography (EMG) from seven muscles of the shoulder girdle and shoulder moment were collected for each 6 s shoulder exertion. When normalized to maximum exertion, no differences were found between genders and no differences existed between conditions when subjects maintained each posture without exerted force. In the maximal shoulder exertion trials, an increase in shoulder angle (in either plane) resulted in an increase in EMG in most muscles, while shoulder moment decreased in flexion and remained constant in abduction. Shoulder moments and muscle activation were greatest in the shoulder exertion alone condition followed by adding a 30% grip and the Stroop test, with the addition of both tasks further reducing the exerted shoulder moment and EMG. However, muscle activity did not always decrease with shoulder strength and remained elevated, indicating a complex coactivation pattern produced by an interfering role of the tasks. Overall, it was found that a mental task can have the same or greater effect as a concurrent grip and should be considered when assessing muscular loading in the workplace, as typical biomechanical modelling may underestimate internal loads. The results not only provide valuable shoulder strength data but also practical strength values, depending on additional tasks.
Key pointsr This is the first report, in adult decerebrate rats, to examine intracellular hindlimb motoneurone properties during quiescence, fictive locomotion and a tonic period immediately before fictive locomotion that is characterized by increased peripheral nerve activity.r It is shown for the first time during fictive locomotion that motoneurones become more responsive in the tonic period, suggesting that the motoneurone pool becomes primed before patterned motor output commences.r Spike frequency adaptation exists in quiescence and during fictive locomotion during constant excitation with injected current but not during centrally driven fictive locomotion. r The data show increased responsiveness of motoneurones during locomotion via a lowered threshold for spike initiation and decreased rheobase.Abstract This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the 'tonic' period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor-extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as 'idle' motoneurones. LDP and idle motoneurones during locomotion had hyperpolarized spike threshold (V th ; LDP: 3.8 mV; idle: 5.8 mV), decreased rheobase and an increased discharge rate (LDP: 64%; idle: 41%) during triangular ramp current injection even though the frequency-current slope was reduced by 70% and 55%, respectively. Modulation began in the tonic period immediately preceding C. W. MacDonell and K. E. Power contributed equally to this work. locomotion, with a hyperpolarized V th and reduced rheobase. Spike frequency adaptation did not occur in spiking LDPs or firing generated from sinusoidal current injection, but occurred during a sustained current pulse during locomotion. Input conductance showed no change. Results suggest motoneurone modulation occurs across the pool and is not restricted to motoneurones engaged in locomotion.
MacDonell CW, Button DC, Beaumont E, Cormery B, Gardiner PF. Plasticity of rat motoneuron rhythmic firing properties with varying levels of afferent and descending inputs. J Neurophysiol 107: 265-272, 2012. First published September 28, 2011 doi:10.1152/jn.00122.2011.-Hindlimb motoneuron excitability was compared among exercise-trained (E), sedentary (S), and spinal cord transected (T) Sprague-Dawley rats by examining the slope of the frequency-current (F/I) relationship with standard intracellular recording techniques in rats anesthetized with ketamine-xylazine. The T group included spinal transected and spinal isolated rats; the E animals were either spontaneously active (exercise wheel) or treadmill trained; and rats in the S group were housed in pairs. An analysis of motoneuron initial [1st interspike interval (ISI)], early (mean of 1st three ISIs), and steady-state (mean of last 3 ISIs) discharge rate slopes resulting from increasing and decreasing 500-ms injected squarewave depolarizing current pulses was used to describe rhythmic motoneuron properties. The steepest slope occurred in the S group (55.3 Ϯ 22.2 Hz/nA), followed by the T group (35.5 Ϯ 15.3 Hz/nA), while the flattest slope was found in the E group (25.4 Ϯ 10.9 Hz/nA). The steepest steady-state slope occurred in the S group but was found to be similar between the T and E groups. Furthermore, a spikefrequency adaptation (SFA) index revealed a slower adaptation in motoneurons of the E animals only (ϳ40% lower). Finally, evidence for a secondary range of firing existed more frequently in the T group (41%) compared with the S (12%) and E (31%) groups. The lower F/I slope and lower SFA index of motoneurons for E rats may be a result of an increase in Na ϩ conductance at the initial segment. The results show that motoneuronal rhythmic firing behavior is plastic, depending on the volume of daily activation and on intact descending pathways.exercise; frequency-current relation; electrophysiology SEVERAL INVESTIGATIONS have illustrated plasticity of motoneurons by decreasing neuromuscular activity, eliminating supraspinal (spinal transected) and afferent (spinal isolation) activity, or increasing activity through exercise. Decreased neuromuscular activity tends to decrease excitability (Cormery et al. 2000(Cormery et al. , 2005 and shift the frequency-current (F/I) relation to the right (Cormery et al. 2005), while spinal transection and isolation result in motoneurons that show changes that lead to both increases and decreases in excitability. While the response of motoneurons to reduced activity is complex and may be mediated partly by descending drive and reduced neuromuscular activation, an increased activity paradigm (by way of exercise) results in adaptations that tend to increase the excitability of the motoneuron Gardiner 2002, 2003). The mechanisms for changes to motoneuron properties may be due to changes in ionic conductance, as suggested when the Dai et al. (2002) motoneuron model was applied to findings in the Cormery et al. (2005) study....
The purpose of this study was to determine if quipazine, a serotonergic agonist, differentially modulates flexor and extensor motor output. This was achieved by examining the monosynaptic reflex (MSR) of the tibial (extensor) and peroneal (flexor) nerves, by determining the basic and rhythmic properties of extensor and flexor motoneurons, and by recording extracellular Ia field potentials of the tibial and peroneal nerves in the in vivo adult decerebrate rat in both spinal intact and acute spinalized preparations. In the spinal intact preparation, the tibial and peroneal MSR amplitude significantly increased compared with baseline in response to quipazine, with no difference between nerves (P < 0.05). In the spinalized preparation, the MSR was significantly increased in both the tibial and peroneal nerves with the latter increasing more than the former (5.7 vs. 3.6 times; P < 0.05). Intracellular motoneuron experiments demonstrated that rheobase decreased, while input resistance, afterhyperpolarization amplitude, and the firing rate at a given current injection increased in motoneurons following quipazine administration with no differences between extensor and flexor motoneurons. Both the tibial and peroneal nerve extracellular Ia field potentials increased with the peroneal demonstrating a significantly greater increase (7 vs. 38%; P < 0.05) following quipazine. It is concluded that in the spinal intact preparation quipazine does not have a differential effect on flexor or extensor motor output. However, in the acute spinalized preparation, quipazine preferentially affects the flexor MSR compared with the extensor MSR, likely due to the removal of a descending tonic inhibition on flexor Ia afferents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.