BackgroundPreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo.MethodsDetermine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy.ResultsPIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control).ConclusionsPIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner.
Preimplantation factor (PIF) is secreted by viable mammalian embryos and promotes implantation and trophoblast invasion. Whether PIF also has a direct protective or promoting effect on the developing embryo in culture is unknown. This study examined the protective effects of synthetic PIF (sPIF) on embryos cultured with embryo toxic serum (ETS) from recurrent pregnancy loss patients (n=14), by morphological criteria at 72 h of culture, and determined sPIF-promoting effect on singly cultured bovine IVF embryo development. sPIF negated the ETS-induced effect by increasing mouse blastocyst rate versus other embryonic stages (odds ratio (OR) 2.01, 95% confidence intervals (CI) 1.14-3.55, chi-squared=12.74, P=0.002), increased blastocyst rate (39.0% versus 23.7% ETS alone) and lowered embryo demise rate (11.0% versus 28.8%, OR 0.24, 95% CI 0.11-0.54), which was not replicated by scrambled PIF or the control. sPIF added to bovine embryos for 3 days promoted development at day 7 of culture (11% versus 0%, chi-squared=4.0, P=0.045). In conclusion, sPIF prevented embryo demise caused by exposure to ETS and promoted development of singly cultured bovine IVF embryos following short-term exposure. sPIF-based therapy for reducing recurrent pregnancy loss and improving lagging cultured IVF embryo development should be explored.
Embryo-secreted preimplantation factor (PIF) is necessary for, and its concentration correlates with, embryo development in humans by promoting implantation and trophoblast invasion. Synthetic PIF (sPIF) modulates systemic immunity and is effective in autoimmune disease models. sPIF binds monocytes and activated T and B cells, leading to immune tolerance without suppression. This study examined the effect of sPIF on natural killer (NK) cell cytotoxicity in 107 consecutive nonselected, nonpregnant patients with recurrent pregnancy loss (RPL) and 26 infertile IVF patients (controls). The effects of sPIF, intravenous gamma immunoglobulin (Ig), Intralipid and scrambled PIF (PIFscr; negative control) on NK cell cytotoxicity to peripheral-blood cells were compared by flow cytometry of labelled-K562 cell cytolysis. The effects of sPIF and PIFscr on whole-blood NKCD69+ expression were also compared. In patients with RPL, sPIF inhibited NK cell cytotoxicity at doses of 2.5 and 25ng/ml (37% and 42%) compared with PIFscr (18%; P<0.001), regardless of the proportion of peripheral-blood NKCD56+ cells to lymphocytes. Pre-incubation of blood from infertile patients with sPIF for 24h decreased NKCD69+ expression versus incubatino with PIFscr (P<0.05). In conclusion, sPIF inhibits NK cell cytotoxicity by reducing NKCD69 expression, suggesting a significant role in RPL patients. There is a continuous search to identify safe and effective agents to counteract recurrent pregnancy loss (RPL). Preimplantation factor (PIF) secreted by the embryo at the 2-cell stage is present throughout viable pregnancy but absent in nonviable pregnancy. Its immunomodulatory (not suppressive) effects promote embryo acceptance and maintenance by mother/host, control inflammation, facilitate uterine environment and placental embedding. Synthetic PIF (sPIF) was used to complete PIF's role as a targeted, safe treatment for immune-based RPL. Previous reports showed sPIF's significant protective systemic effect against maternal factors present in RPL serum. Herein is examined sPIF's ability to inhibit the local protective toxicity induced by natural killer (NK) immune cells in a representative number of RPL patients. When elevated in blood, NK cells are associated with RPL. Low-dose physiological sPIF was highly effective to inhibit NK cell toxicity. Side-by-side comparison showed that sPIF is equally effective at a lower dose than intravenous gamma immunoglobulin or Intralipid treatment currently used. The sPIF effect on NK cells was targeted, indicating specific action. Overall, sPIF may represent a safe, effective and nontoxic immune-based therapy against RPL.
BackgroundEarly identification of viable pregnancy is paramount for successful reproduction. Detection of specific signals from pre-implantation viable embryos in normal pregnancy circulation would indicate initiation of embryo-maternal interaction and create a continuum to accurately reflect embryo/fetal well-being post-implantation. Viable mammalian embryos secrete PreImplantation Factor (PIF), a biomarker which plays key, multi-targeted roles to promote implantation, trophoblast invasion and modulate maternal innate and adaptive immunity toward acceptance. Anti-PIF monoclonal antibody (mAb-based chemiluminescent ELISA) accurately detects PIF in singly cultured embryos media and its increased levels correlate with embryo development up to the blastocyst stage. Herein reported that PIF levels (ELISA) in early maternal serum correlate with pregnancy outcome.MethodsArtificially inseminated (AI) blind-coded Angus cattle (N = 21-23) serum samples (day10,15 & 20 post-AI) with known calf birth were blindly tested, using both non-pregnant heifers (N = 30) and steer serum as negative controls. Assay properties and anti-PIF monoclonal antibody specificity were determined by examining linearity, spike and recovery experiments and testing the antibody against 234 different circulating proteins by microarray. Endogenous PIF was detected using <3 kDa filter separation followed by anti-PIF mAb-based affinity chromatography and confirmed by ELISA and HPLC. PIF expression was established in placenta using anti-PIF mAb-based IHC.ResultsPIF detects viable pregnancy at day 10 post-AI with 91.3% sensitivity, reaching 100% by day 20 and correlating with live calf birth. All non-pregnant samples were PIF negative. PIF level in pregnant samples was a stringent 3 + SD higher as compared to heifers and steer sera. Assay is linear and spike and recovery data demonstrates lack of serum interference. Anti-PIF mAb is specific and does not interact with circulating proteins. Anti-PIF based affinity purification demonstrates that endogenous PIF is what ELISA detects. The early bovine placenta expresses PIF in the trophoblast layer.ConclusionData herein documents that PIF is a specific, reliable embryo-derived biomarker conveniently detectable in early maternal circulation. PIF ELISA emerges as practical tool to detect viable early pregnancy from day 20 post-AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.