Medication-assisted treatments are unavailable to patients with cocaine use disorders. Efforts to develop potential pharmacotherapies have led to the identification of a promising lead molecule, JJC8-091, that demonstrates a novel binding mode at the dopamine transporter (DAT). Here, JJC8-091 and a structural analogue, JJC8-088, were extensively and comparatively assessed to elucidate neurochemical correlates to their divergent behavioral profiles. Despite sharing significant structural similarity, JJC8-088 was more cocaine-like, increasing extracellular DA concentrations in the nucleus accumbens shell (NAS) efficaciously and more potently than JJC8-091. In contrast, JJC8-091 was not self-administered and was effective in blocking cocaine-induced reinstatement to drug seeking. Electrophysiology experiments confirmed that JJC8-091 was more effective than JJC8-088 at inhibiting cocaine-mediated enhancement of DA neurotransmission. Further, when VTA DA neurons in DAT-cre mice were optically stimulated, JJC8-088 produced a significant leftward shift in the stimulation-response curve, similar to cocaine, while JJC8-091 shifted the curve downward, suggesting attenuation of DA-mediated brain reward. Computational models predicted that JJC8-088 binds in an outward facing conformation of DAT, similar to cocaine. Conversely, JJC8-091 steers DAT towards a more occluded conformation. Collectively, these data reveal the underlying molecular mechanism at DAT that may be leveraged to rationally optimize leads for the treatment of cocaine use disorders, with JJC8-091 representing a compelling candidate for development.
Neurotensin (NT) is a 13 amino acid neuropeptide that is expressed throughout the central nervous system and is implicated in the etiology of multiple diseases and disorders. Many primary investigations of NT-induced modulation of neuronal excitability at the level of the synapse have been conducted, but they have not been summarized in review form in nearly 30 years. Therefore, the goal of this review is to discuss the many actions of NT on neuronal excitability across brain regions as well as NT circuit architecture. In the basal ganglia as well as other brain nuclei, NT can act through diverse intracellular signaling cascades to enhance or depress neuronal activity by modulating activity of ion channels, ionotropic and metabotropic neurotransmitter receptors, and presynaptic release of neurotransmitters. Further, NT can produce indirect effects by evoking endocannabinoid release, and recently has itself been identified as a putative retrograde messenger. In the basal ganglia, the diverse actions and circuit architecture of NT signaling allow for input-specific control of reward-related behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.