Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laserdriven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.oron carbide is one of the hardest materials on earth while extremely lightweight, making it excellent for ballistic protection applications such as body armor (1-6). Thus, its dynamic behavior under impact/shock loading has been the subject of intensive studies for decades (1,(5)(6)(7)(8)(9)(10)(11)(12)(13). It is known that boron carbide undergoes an abrupt shear strength drop at a critical shock pressure around 20∼23 GPa, suggesting a deteriorated penetration resistance (8). Based on similar observations in geological materials (5), Grady (7) hypothesized that this was caused by localized softening mechanisms such as shear localization and/or melting. Examining fragments collected from a ballistic test using transmission electron microscopy (TEM), Chen et al. (14) were the first to identify localized amorphization in boron carbide, which appeared to be aligned to certain crystallographic planes. However, because the loading history of these fragments is unknown, its effect on the observed microstructure is not understood. Additionally, although the more well-defined loading conditions associated with quasi-static diamond-anvil cell (15) and nanoindentation (16, 17) experiments have provided greater insight into amorphization of boron carbide, they do not address the regime of high strain rate.The laser shock experimental technique offers promise in bridging the gaps of the previous experiments by enabling boron carbide to be shock compressed under controlled and prescribed uniaxial strain loading conditions and then recovered for postshock characterization by TEM. To ensure the integrity of the specimen, the duration of the stress pulse should be smaller than the characteristic time for crack propagation which is typically on the microsecond scale [limited by Rayleigh wave speed (18)]. Traditional dynamic loading methods such as plate impact and split Hopkinson bar cannot deliver the strain rates required because the stress pulses of both techniques occur on microsecond time scales. Therefore, brittle solids such as B 4 C will fail catastrophically by crack nucleation, propagation, and coalescence (19). To solve this ch...
High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
Carbon is the fourth most prevalent element in the universe and essential for all known life. In the elemental form it is found in multiple allotropes including graphite, diamond, and fullerenes, and it has long been predicted that even more structures can exist at greater than Earth-core pressures. [1][2][3] . Several new phases have been predicted in the multi-terapascal (TPa) regime, important for accurately modeling interiors of carbon-rich exoplanets 4,5 . By compressing solid carbon to 2 TPa (20 million atmospheres; over 5 times the pressure at the Earth's core) using ramp-shaped laser pulses, and simultaneously measuring nanosecond-duration time resolved x-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability.The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to the more stable high-pressure allotropes 1,2 , just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the record high pressure at which x-ray diffraction has been recorded on any material.
We examine the effect of grain size on the dynamic failure tantalum during laser-shock compression and release and identify a significant effect of grain size on spall strength,which is opposite the prediction of the Hall-Petch relationship: monocrystals have a higher spall strength than polycrystals, which, in turn, are stronger in tension than ultrafine grain sized specimens. Post-shock characterization reveals ductile failure which evolves by void nucleation, growth, and coalescence. Whereas in the monocrystal the voids grow in the interior, nucleation is both intra and intergranular in the poly and UFG crystals. The fact that spall is primarily intergranular in both poly and nanocrystalline samples is strong evidence for higher growth rates of intergranular voids, which have a distinctly oblate spheroid shape in contrast with intragranular voids, which are more spherical. Consistent with prior literature and theory we also identify an increase with spall strength with strain rate from 6x10 6 to 5x10 7 s-1. Molecular dynamics calculations agree with the experimental results and also predict grain-boundary separation in the spalling of polycrystals as well as an increase in spall strength with strain rate. An analytical model based on the kinetics of nucleation and growth of intra and intergranular voids and extending the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.