The active inference framework, and in particular its recent formulation as a partially observable Markov decision process (POMDP), has gained increasing popularity in recent years as a useful approach for modelling neurocognitive processes. This framework is highly general and flexible in its ability to be customized to model any cognitive process, as well as simulate predicted neuronal responses based on its accompanying neural process theory. It also affords both simulation experiments for proof of principle and behavioral modelling for empirical studies. However, there are limited resources that explain how to build and run these models in practice, which limits their widespread use. Most introductions assume a technical background in programming, mathematics, and machine learning. In this paper we offer a step-by-step tutorial on how to build POMDPs, run simulations using standard MATLAB routines, and fit these models to empirical data. We assume a minimal background in programming and mathematics, thoroughly explain all equations, and provide exemplar scripts that can be customized for both theoretical and empirical studies. Our goal is to provide the reader with the requisite background knowledge and practical tools to apply active inference to their own research. We also provide optional technical sections and several appendices, which offer the interested reader additional technical details. This tutorial should provide the reader with all the tools necessary to use these models and to follow emerging advances in active inference research.
The global neuronal workspace (GNW) model has inspired over two decades of hypothesis driven research on the neural basis consciousness. However, recent studies have reported findings that appear inconsistent with the predictions of the model. Further, the macroanatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model -based on the active inference framework -that captures central architectural elements of the GNW and that can address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behaviour results observed in previous studies of inattentional blindness, and 2) the previously described four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions..
The global neuronal workspace (GNW) model has inspired over two decades of hypothesis driven research on the neural basis consciousness. However, recent studies have reported findings that appear inconsistent with the predictions of the model. Further, the macroanatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model -based on the active inference framework -that captures central architectural elements of the GNW and that can address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behaviour results observed in previous studies of inattentional blindness, and 2) the previously described four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.