Graphene oxide membranes show exceptional molecular permeation properties, with a promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of 9 Å, which is larger than hydrated ion diameters for common salts. The cutoff is determined by the interlayer spacing d 13.5 Å, typical for graphene oxide laminates that swell in water. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here we describe how to control d by physical confinement and achieve accurate and tuneable ion sieving. Membranes with d from 9.8 Å to 6.4 Å are demonstrated, providing the sieve size smaller than typical ions' hydrated diameters. In this regime, ion permeation is found to be thermally activated with energy barriers of 10-100 kJ/mol depending on d. Importantly, permeation rates decrease exponentially with decreasing the sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for water molecules entry and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.Selectively permeable membranes with sub-nm pores attract strong interest due to analogies with biological membranes and potential applications in water filtration, molecular separation and desalination [1][2][3][4][5][6][7][8] . Nanopores with sizes comparable to, or smaller than, the diameter D of hydrated ions are predicted to show enhanced ion selectivity 7,9-12 because of dehydration required to pass through such atomic-scale sieves. Despite extensive research on ion dehydration effects 3,7,9-13 , experimental investigation of the ion sieving controlled by dehydration has been limited because of difficulties in fabricating uniform membranes with well-defined sub-nm pores. The realisation of membranes with dehydration-assisted selectivity would be a significant step forward. So far, research into novel membranes has mostly focused on improving the water flux rather than ion selectivity. On the other hand, modelling of practically relevant filtration processes shows that an increase in water permeation rates above the rates currently achieved (2-3 L/m 2 ×h×bar) would not contribute greatly to the overall efficiency of desalination 8,14,15 . Alternative approaches based on higher water-ion selectivity may open new possibilities for improving filtration technologies, as the performance of state-of-the-art membranes is currently limited by the solution-diffusion mechanism, in which water molecules dissolve in the membrane material and then diffuses across the membrane 8 . Recently, carbon nanomaterials including carbon nanotubes (CNT)
Individual carbon nanotubes are like minute bits of string, and many trillions of these invisible strings must be assembled to make useful macroscopic articles. We demonstrated such assembly at rates above 7 meters per minute by cooperatively rotating carbon nanotubes in vertically oriented nanotube arrays (forests) and made 5-centimeter-wide, meter-long transparent sheets. These self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers. The measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of sheets of high-strength steel. These nanotube sheets have been used in laboratory demonstrations for the microwave bonding of plastics and for making transparent, highly elastomeric electrodes; planar sources of polarized broad-band radiation; conducting appliqués; and flexible organic light-emitting diodes.
A scanning micropipet contact method (SMCM) is described which promises wide-ranging application in imaging and quantifying electrode activity at high spatial resolution. In SMCM, a moveable micropipet probe (diameter 300 nm to 1 microm) containing an electroactive species in electrolyte solution is brought to a sample electrode surface so that the liquid meniscus makes contact. The micropipet contains a reference-counter electrode, and the sample is connected as the working electrode to make a two-electrode voltammetric measurement. SMCM thus makes possible highly localized electrochemical experiments, and furthermore, heterogeneous electrode surfaces may be investigated without the substrate being completely immersed in solution. This opens up the possibility of making measurements on a wide range of electrode materials without having to encapsulate the electrode. Furthermore, the electrode/solution contact can be made rapidly and briefly, which is useful for situations where the electrode would be unstable for longer periods (e.g., due to corrosion or surface adsorption). For heterogeneously active surfaces the technique is particularly powerful as it allows defined areas to be targeted and individual sites to be probed. To exemplify the approach, the electroactivity of basal plane highly oriented pyrolytic graphite (HOPG) and two types of aluminum alloy were investigated. SMCM measurements indicate that basal plane HOPG shows much greater activity than present consensus. Measurements of chemically heterogeneous aluminum alloy surfaces with SMCM allow variations in redox activity to be mapped with high spatial resolution.
Scanning ion conductance microscopy (SICM) is a scanned probe microscopy technique in which the probe is a fine glass pipet filled with a contact (reference) electrode and an electrolyte solution. The current flow between the reference electrode and a second reference electrode positioned in bulk solution when the two electrodes are biased externally can be used as a feedback signal to maintain a constant separation between the tip and a surface during imaging. In usual practice the tip position is modulated over a small amplitude perpendicular to the surface, and the resulting alternating current (AC) is used as the feedback signal, although the direct current can also be used. A comprehensive model for the current response is reported. Laplace's equation has been solved for the electrolyte solution for a range of tip geometries, enabling the factors controlling the tip current to be identified. The approach developed is shown to represent an improvement over earlier semiempirical treatments. To explore the influence of surface topography on the (AC) current response, various surfaces have been considered, including a tip moved toward a planar surface (in the normal direction) and tips scanned over a pit and a step in the surface. The results have allowed a critical assessment of the SICM response as a means of probing surface topography. Features identified through simulation have been found in experiments through studies of two model substrates for which imaging results are reported. In typical experimental practice, the response of the SICM tip to surface features occurs over much greater lateral distances than the size of the pipet aperture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.