Aluminum alloys are increasingly used in automotive structural applications thanks to their combination of low density, high strength, and good formability. Appropriate strength levels for dent resistant automotive aluminum panels may be achieved by a combination of alloy design and thermo-mechanical treatments. Unfortunately, increased strength (hardness) generally limits homogeneous plastic deformation. Thus, when shaping complex components large deformation and eventually strain localization, necking and final failure is more likely to occur. In this chapter, we endeavor to explore the best compromises between increased hardening and satisfying formability. Sheet metal shaping generates large strains and eventually strain localization. The accurate measure of metal behavior is discussed first. The following section is dedicated to the kinetics of damage development during shaping. Then metal ductility at low stress triaxiality and consequent strain localization are discussed. Finally, trimming and hemming, the most complex shaping operations to perform efficiently are analyzed providing a powerful tool for alloy design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.