Artificial intelligence and machine learning have demonstrated their potential role in predictive chemistry and synthetic planning of small molecules; there are at least a few reports of companies employing in silico synthetic planning into their overall approach to accessing target molecules. A data-driven synthesis planning program is one component being developed and evaluated by the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, comprising MIT and 13 chemical and pharmaceutical company members. Together, we wrote this perspective to share how we think predictive models can be integrated into medicinal chemistry synthesis workflows, how they are currently used within MLPDS member companies, and the outlook for this field.
Venturing into the immensity of the small molecule universe to identify novel chemical structure is a much discussed objective of many methods proposed by the chemoinformatics community. To this end, numerous approaches using techniques from the fields of computational de novo design, virtual screening and reaction informatics, among others, have been proposed. Although in principle this objective is commendable, in practice there are several obstacles to useful exploitation of the chemical space. Prime among them are the sheer number of theoretically feasible compounds and the practical concern regarding the synthesizability of the chemical structures conceived using in silico methods. We present the Proximal Lilly Collection initiative implemented at Eli Lilly and Co. with the aims to (i) define the chemical space of small, drug-like compounds that could be synthesized using in-house resources and (ii) facilitate access to compounds in this large space for the purposes of ongoing drug discovery efforts. The implementation of PLC relies on coupling access to available synthetic knowledge and resources with chemo/reaction informatics techniques and tools developed for this purpose. We describe in detail the computational framework supporting this initiative and elaborate on the characteristics of the PLC virtual collection of compounds. As an example of the opportunities provided to drug discovery researchers by easy access to a large, realistically feasible virtual collection such as the PLC, we describe a recent application of the technology that led to the discovery of selective kinase inhibitors.
Drug discovery and development is a complex, lengthy process, and failure of a candidate molecule can occur as a result of a combination of reasons, such as poor pharmacokinetics, lack of efficacy, or toxicity. Successful drug candidates necessarily represent a compromise between the numerous, sometimes competing objectives so that the benefits to patients outweigh potential drawbacks and risks. De novo drug design involves searching an immense space of feasible, druglike molecules to select those with the highest chances of becoming drugs using computational technology. Traditionally, de novo design has focused on designing molecules satisfying a single objective, such as similarity to a known ligand or an interaction score, and ignored the presence of the multiple objectives required for druglike behavior. Recently, methods have appeared in the literature that attempt to design molecules satisfying multiple predefined objectives and thereby produce candidate solutions with a higher chance of serving as viable drug leads. This paper describes the Multiobjective Evolutionary Graph Algorithm (MEGA), a new multiobjective optimization de novo design algorithmic framework that can be used to design structurally diverse molecules satisfying one or more objectives. The algorithm combines evolutionary techniques with graph-theory to directly manipulate graphs and perform an efficient global search for promising solutions. In the Experimental Section we present results from the application of MEGA for designing molecules that selectively bind to a known pharmaceutical target using the ChillScore interaction score family. The primary constraints applied to the design are based on the identified structure of the protein target and a known ligand currently marketed as a drug. A detailed explanation of the key elements of the specific implementation of the algorithm is given, including the methods for obtaining molecular building blocks, evolving the chemical graphs, and scoring the designed molecules. Our findings demonstrate that MEGA can produce structurally diverse candidate molecules representing a wide range of compromises of the supplied constraints and thus can be used as an "idea generator" to support expert chemists assigned with the task of molecular design.
The need for synthetic route design arises frequently in discovery-oriented chemistry organizations. While traditionally finding solutions to this problem has been the domain of human experts, several computational approaches, aided by the algorithmic advances and the availability of large reaction collections, have recently been reported. Herein we present our own implementation of a retrosynthetic analysis method and demonstrate its capabilities in an attempt to identify synthetic routes for a collection of approved drugs. Our results indicate that the method, leveraging on reaction transformation rules learned from a large patent reaction dataset, can identify multiple theoretically feasible synthetic routes and, thus, support research chemist everyday efforts. Electronic supplementary material The online version of this article (10.1186/s13321-018-0323-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.