The scale, volume, and distribution speed of disinformation raise concerns in governments, businesses, and citizens. To respond effectively to this problem, we first need to disambiguate, understand, and clearly define the phenomenon. Our online information landscape is characterized by a variety of different types of false information. There is no commonly agreed typology framework, specific categorization criteria, and explicit definitions as a basis to assist the further investigation of the area. Our work is focused on filling this need. Our contribution is twofold. First, we collect the various implicit and explicit disinformation typologies proposed by scholars. We consolidate the findings following certain design principles to articulate an all-inclusive disinformation typology. Second, we propose three independent dimensions with controlled values per dimension as categorization criteria for all types of disinformation. The taxonomy can promote and support further multidisciplinary research to analyze the special characteristics of the identified disinformation types.
The search for weak periodic signals in time series data is an active topic of research. Given the fact that rarely a real world dataset is perfectly periodic, this paper approaches this problem in terms of data mining, trying to discover weak periodic signals in time series databases, when no period length is known in advance. In existing time series mining algorithms, the period length is user-specified. We propose an algorithm for finding approximate periodicities in large time series data, utilizing autocorrelation function and FFT. This algorithm is an extension to the partial periodicity detection algorithm presented in a previous paper of ours. We provide some mathematical background as well as experimental results.
The prediction of the translation initiation site in a genomic sequence with the highest possible accuracy is an important problem that still has to be investigated by the research community. Current approaches perform quite well, however there is still room for a more general framework for the researchers who want to follow an effective and reliable methodology. We developed a prediction methodology that combines ad hoc as well as discovered knowledge in order to significantly increase the achieved accuracy reliably. Our methodology is modular and consists of three major decision components: a consensus component, a coding region classification component and a novel ATG location-based component that allows for the utilization of the advantages of the popular Ribosome Scanning Model while overcoming its limitations. All three of them are combined into a meta-classification system, using stacked generalization, in a highly effective prediction framework. We performed extensive comparative experiments on four different datasets, showing that the increase in terms of accuracy and adjusted accuracy is not only statistically significant, but also the highest reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.