Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.
Leaf springs constitute the most effective suspension way of commercial vehicle axles from the cost and maintainability point of view. Especially in case of front axles, they overtake both the guidance and suspension functions, which consequently designates them as safety components, whose pre-mature failure is explicitly prohibited. The present paper deals with the fatigue performance of downsized parabolic leaf specimens made of the high-strength spring steel 51CrV4 under serial manufacturing conditions. It focuses on the influence of the major manufacturing steps, i.e. the heat treatment and the subsequently applied stress shot peening. The effectiveness of the applied heat treatment on the microstructure transformation and the extent of surface decarburization is determined by means of optical microscopy and corresponding microstructural analyses. Comprehensive series of constant amplitude fatigue tests are executed before and after the applied stress shot peening to quantify its effectiveness on the fatigue performance. The tests cover two characteristic stress ratios of operational significance with the complete range of interest being experimentally investigated. Additionally, surface residual stresses measurements together with micro- and macro-hardness and roughness values before and after stress shot peening are executed to expose the influence of each individual technological effect on the overall fatigue performance.
Shot peening is a surface treatment process commonly used to enhance the fatigue properties of metallic engineering components. In industry, various types of shots are used, and a common strategy is to regenerate a portion (approximately up to 35% of the total shot mix weight) of used and worn shots with new ones of the same type. Shots of the same type do not have a constant diameter, as it is concluded by experience that the diameter variation is beneficial for fatigue life. The process of stochasticity raises the difficulty for the application of computational methods, such as finite elements analysis, for the calculation of pivotal parameters, for instance, the development of the residual stress field. In the present work, a recently developed plane strain 2D FEM model is used, which has the capability to consider various shot size distributions. With the aid of this model, it became feasible to study the effect of the shot-size distribution, its sensitivity, and to draw conclusions considering the industrial practice of using a mixture with new and worn shots. The diameter of these shot types differs significantly, and a used shot may have a diameter three times smaller than a new one. As concluded from the finite element results, which are verified from experimental measurements, a shot type with a larger diameter causes a wider valley in the stress profile, and the peak stress depth increases. Alongside the peak stress depth movement, with smaller shots, larger residual stresses are observed closer to the surface. Thus, the superimposition of many shots with variable diameters causes the development of a residual stress field with enhanced characteristics. Furthermore, this residual stress field may be further enhanced by adjusting or increasing the percentage weight of the used shots, up to ~50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.