VKORC1-1639G>A, CYP2C9*2 and CYP2C9*3 polymorphisms were found to predispose to acenocoumarol sensitivity in Greeks. Other hereditary and nongenetic parameters must be incorporated in an individualized dosing algorithm to achieve a safer anticoagulant effect.
The aim of this study was to assess the prevalence of several polymorphisms in genes that are involved in several pathways such as hemostasis, fibrinolysis, platelet membrane receptor activity, endothelial integrity and function, lipid metabolism, and regulation of blood pressure in healthy subjects of Greek origin. Most of these polymorphisms are mainly associated with conditions such as venous thromboembolism and atherothrombosis, and their prevalence has not been studied yet in Greece. We tested 140 healthy individuals for factor V (FV)1691G/A, FV4070G/A, FII 20210G/A, factor XIII (FXIII) exon 2G/T, fibrinogen beta-455G/A, plasminogen activator inhibitor-1 (PAI-1)-675 4G/5G, human platelet antigens 1 (HPA1) a/b, apolipoprotein B (ApoB) 10708 G/A, apolipoprotein E (ApoE) E2, E3, and E4, angiotensin-converting enzyme (ACE) D/I, 5,10 methylenetetrahydrofolate reductase (MTHFR) 677C/T, and MTHFR 1298A/C polymorphisms using a PCR and reverse hybridization technique that detects all of them simultaneously. The allele frequencies observed are in accordance with those reported in other Caucasian populations and almost identical to those of East Mediterranean populations. This first report from Greece may serve as a baseline for planning further investigations of these polymorphisms in association with several clinical entities and for launching guidelines for patient testing of various disease settings in this population.
Genetic variants of hemostatic factors leading to prothrombotic phenotypes of hypercoagulability and hypofibrinolysis might affect prognosis of septic critically ill patients. Our aim was to evaluate the effect of four hemostatic genetic variants, namely fibrinogen-beta-455G/A, factor XIII (FXIII) V34L, plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphisms and factor V Leiden (FVL) mutation on survival of critically ill patients with severe sepsis or septic shock. A prospective, observational study in an 18-bed general ICU included 73 patients with severe sepsis or septic shock. Epidemiological, laboratory data and comorbidities along with severity scores were recorded. Genotyping for fibrinogen-beta-455G/A, FXIII V34L and PAI-1 4G/5G polymorphism and FVL mutation was carried out in all patients. The primary outcomes were the 28-day and the 90-day survival. Age, septic shock, severity indexes, prior steroid use and arterial pH were identified as predictors of the 28-day and 90-day survival in both the univariate and the multivariate models. On the contrary, none of the examined polymorphisms was found to significantly affect either the 28-day or the 90-day survival. Our data suggest that the importance of these hemostatic polymorphisms as predictors of the prognosis of sepsis in critically ill patients is probably very small.
Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.