A thin film aluminum-air battery has been constructed using a commercial grade Al-6061 plate as anode electrode, an air-breathing carbon cloth carrying an electrocatalyst as cathode electrode, and a thin porous paper soaked with aqueous KOH as electrolyte. This type of battery demonstrates a promising behavior under ambient conditions of 20 °C temperature and around 40% humidity. It presents good electric characteristics when plain nanoparticulate carbon (carbon black) is used as electrocatalyst but it is highly improved when MnO2 particles are mixed with carbon black. Thus, the open-circuit voltage was 1.35 V, the short-circuit current density 50 mA cm−2, and the maximum power density 20 mW cm−2 in the absence of MnO2 and increased to 1.45 V, 60 mA cm−2, and 28 mW cm−2, respectively, in the presence of MnO2. The corresponding maximum energy yield during battery discharge was 4.9 mWh cm−2 in the absence of MnO2 and increased to 5.5 mWh cm−2 in the presence of MnO2. In the second case, battery discharge lasted longer under the same discharge conditions. The superiority of the MnO2-containing electrocatalyst is justified by electrode electrochemical characterization data demonstrating reduction reactions at higher potential and charge transfer with much smaller resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.