Glioblastoma is the most aggressive and infiltrative glioma, classified as Grade IV, with the poorest survival rate among patients. Accurate and rigorously tested mechanistic in silico modeling offers great value to understand and quantify the progression of primary brain tumors. This paper presents a continuum‐based finite element framework that is built on high performance computing, open‐source libraries to simulate glioblastoma progression. We adopt the established proliferation invasion hypoxia necrosis angiogenesis model in our framework to realize scalable simulations of cancer, and has demonstrated to produce accurate and efficient solutions in both two‐ and three‐dimensional brain models. The in silico solver can successfully implement arbitrary order discretization schemes and adaptive remeshing algorithms. A model sensitivity analysis is conducted to test the impact of vascular density, cancer cell invasiveness and aggressiveness, the phenotypic transition potential, including that of necrosis, and the effect of tumor‐induced angiogenesis in the evolution of glioblastoma. Additionally, individualized simulations of brain cancer progression are carried out using pertinent magnetic resonance imaging data, where the in silico model is used to investigate the complex dynamics of the disease. We conclude by arguing how the proposed framework can deliver patient‐specific simulations of cancer prognosis and how it could bridge clinical imaging with modeling.
This paper investigates a data assimilation approach for non-invasive quantification of intracranial pressure from partial displacement data, acquired through magnetic resonance elastography. Data assimilation is based on a parametrized-background data weak methodology, in which the state of the physical system -tissue displacements and pressure fields -is reconstructed from partially available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges, to simulate the corresponding poroelastic problem, and compute a reduced basis. Displacements and pressure reconstruction is sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics on a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images. It can also inherently handle uncertainty on the physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly. Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions, by appropriately training the reduced-order model. A first application for the estimation of ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.