Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways.
Inappropriate elevation of matrix metalloproteinase-9 (MMP9) is reported to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The object of this study was to identify the molecular mechanism underlying this increase of MMP9 expression, and here we show that oxidative stress-dependent reduction of a protein deacetylase, SIRT1, known as a putative antiaging enzyme, causes elevation of MMP9 expression. A sirtuin inhibitor, splitomycin, and SIRT1 knockdown by RNA interference led an increase in MMP9 expression in human monocytic U937 cells and in primary sputum macrophages, which was detected by RT-PCR, Western blot, activity assay, and zymography. In fact, the SIRT1 level was significantly decreased in peripheral lungs of patients with COPD, and this increase was inversely correlated with MMP9 expression and MMP9 promoter activation detected by a chromatin immunoprecipitation assay. H(2)O(2) reduced SIRT1 expression and activity in U937 cells; furthermore, cigarette smoke exposure also caused reduction of SIRT1 expression in lung tissue of A/J mice, with concomitant elevation of MMP9. Intranasal treatment of a selective and novel SIRT1 small molecule activator, SRT2172, blocked the increase of MMP9 expression in the lung as well as pulmonary neutrophilia and the reduction in exercise tolerance. Thus, SIRT1 is a negative regulator of MMP9 expression, and SIRT1 activation is implicated as a novel therapeutic approach to treating chronic inflammatory diseases, in which MMP9 is abundant.
Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an ''unbiased'' approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the 'omics field. The contributions of the individual 'omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease. @ERSpublications Summary of the application of 'omics-based analytical platforms for biomarker discovery in inflammatory lung diseases
Background: Sputum analysis in asthma is used to define airway inflammatory processes and may guide therapy. Objective: To determine differential gene and protein expression in sputum samples from patients with severe asthma (SA) compared to mildmoderate non-smoking asthmatics (MMA). Methods: Induced sputum was obtained from non-smoking SA (SAn), smokers/ex-smokers with SA (SAsm), MMA and healthy non-smoking controls. Differential cell counts, microarray analysis of cell pellets and SOMAscan analysis of sputum analytes was performed. CRID3 was used to inhibit the inflammasome in a mouse model of severe asthma. Results: Eosinophilic and mixed neutrophilic/eosinophilic inflammation were more prevalent in SA compared to MMA. 42 genes probes were upregulated (>2-fold) in SAn compared to MMA including IL-1R family and NRLP3 inflammasome members (FDR<0.05). The inflammasome proteins NLRP1, NLRP3 and NLRC4 were associated with neutrophilic asthma and with sputum IL--13-induced Th2 signature and IL1RL1 mRNA expression. These differences were sputum-specific since no activation of NLRP3 or enrichment of IL-1R family genes in bronchial brushings or biopsies in SA was observed. Expression of NLRP3 and of the IL-1R family genes was validated in the Airway Disease Endotyping for Personalized Therapeutics (ADEPT) cohort. Inflammasome inhibition using CRID3 prevented airway hyperresponsiveness and airway inflammation (both neutrophilia and eosinophilia) in a mouse model of severe allergic asthma.Conclusion: IL1RL1 gene expression is associated with eosinophilic SA whilst NLRP3 inflammasome expression is highest in neutrophilic SA. Th2-driven eosinophilic inflammation and neutrophil-associated inflammasome activation may represent interacting pathways in SA.Imperial College of Science, Technology and Medicine We enclose a revised version of the above manscript entitled 'Sputum transcriptomics reveal upregulation of IL-1 receptor family members in severe asthma' by Rossios and collagues.We have responded to the Reviewer's comments in a point by point manner below and have incorporated the changes requested.We hope that the manuscript is now acceptable for publication. Responses to CommentsImperial College of Science, Technology and Medicine EDITOR'S SPECIFIC COMMENTS: Thank you for your thoughtful revision of this manuscript. However, I agree with Reviewer 2 in that adjusting for cell composition will allow you to determine whether your results are driven largely by differences in cellular composition or by true differences in gene expression. This will affect the interpretation of your results and provide important biological insight. Response: we have added this detail as detailed in response to Reviewers 1 and 2 below. COMMENTS FROM REVIEWER #1:The authors have addressed most of my original comments and have rewritten some sections of the manuscript to increase overall clarity. Response: We thank the Reviewer for their helpful comments which have improved the paper considerably.The one issue they did not address is...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.