This study aims to benchmark and analyze the process development and manufacturing costs across the biopharmaceutical drug development cycle and their contribution to overall research and development (R&D) costs. This was achieved with a biopharmaceutical drug development lifecycle cost model that captured the costs, durations, risks and interdependencies of the clinical, process development and manufacturing activities. The budgets needed for process development and manufacturing at each phase of development to ensure a market success each year were estimated. The impact of different clinical success rate profiles on the process development and manufacturing costs at each stage was investigated, with a particular focus on monoclonal antibodies. To ensure a market success each year with an overall clinical success rate (Phase I to approval) of 12%, the model predicted that a biopharmaceutical company needs to allocate process development and manufacturing budgets in the order of~$60 M for pre-clinical to Phase II material preparation and~$70 M for Phase III to regulatory review material preparation. For lower overall clinical success rates of~4%, which are more indicative of diseases such as Alzheimer's, these values increase to~$190 M for early-phase and~$140 Mfor late-phase material preparation; hence, the costs increase 2.5 fold. The costs for process development and manufacturing per market success were predicted to represent 13-17% of the R&D budget from pre-clinical trials to approval. The results of this quantitative structured cost study can be used to aid decision-making during portfolio management and budget planning procedures in biopharmaceutical development.
Chimeric antigen receptor (CAR) T cells are considered a potentially disruptive cancer therapy, showing highly promising results. Their recent success and regulatory approval (both in the USA and Europe) are likely to generate a rapidly increasing demand and a need for the design of robust and scalable manufacturing and distribution models that will ensure timely and cost-effective delivery of the therapy to the patient. However, there are challenging tasks as these therapies are accompanied by a series of constraints and particularities that need to be taken into consideration in the decision-making process. Here, we present an overview of the current state of the art in the CAR T cell market and present novel concepts that can debottleneck key elements of the current supply chain model and, we believe, help this technology achieve its long-term potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.