The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade's Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of realnetwork threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets.
Machine Learning (ML) and Deep Learning (DL) have been used for building Intrusion Detection Systems (IDS). The increase in both the number and sheer variety of new cyber-attacks poses a tremendous challenge for IDS solutions that rely on a database of historical attack signatures. Therefore, the industrial pull for robust IDSs that are capable of flagging zero-day attacks is growing. Current outlier-based zero-day detection research suffers from high false-negative rates, thus limiting their practical use and performance. This paper proposes an autoencoder implementation for detecting zero-day attacks. The aim is to build an IDS model with high recall while keeping the miss rate (false-negatives) to an acceptable minimum. Two well-known IDS datasets are used for evaluation—CICIDS2017 and NSL-KDD. In order to demonstrate the efficacy of our model, we compare its results against a One-Class Support Vector Machine (SVM). The manuscript highlights the performance of a One-Class SVM when zero-day attacks are distinctive from normal behaviour. The proposed model benefits greatly from autoencoders encoding-decoding capabilities. The results show that autoencoders are well-suited at detecting complex zero-day attacks. The results demonstrate a zero-day detection accuracy of 89–99% for the NSL-KDD dataset and 75–98% for the CICIDS2017 dataset. Finally, the paper outlines the observed trade-off between recall and fallout.
Body Area Networks (BANs) are an emerging area of wireless personal communications. The IEEE 802.15.6 working group aims to develop a communications standard optimised for low power devices operating on, in or around the human body. IEEE 802.15.6 specifically targets low power medical application areas. The IEEE 802.15.6 draft defines two main channel access modes; contention based and contention free. This paper examines the energy lifetime performance of contention free access and in particular of periodic scheduled allocations. This paper presents an overview of the IEEE 802.15.6 and an analytical model for estimating the device lifetime. The analysis determines the maximum device lifetime for a range of scheduled allocations. It also shows that the higher the data rate of frame transfers the longer the device lifetime. Finally, the energy savings provided by block transfers are quantified and compared to immediately acknowledged alternatives
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.