In this paper, we consider the problem of scheduling real-time traffic in wireless networks under a conflict-graph interference model and single-hop traffic. The objective is to guarantee that at least a certain fraction of packets of each link are delivered within their deadlines, which is referred to as delivery ratio. This problem has been studied before under restrictive frame-based traffic models, or greedy maximal scheduling schemes like LDF (Largest-Deficit First) that can lead to poor delivery ratio for general traffic patterns. In this paper, we pursue a different approach through randomization over the choice of maximal links that can transmit at each time. We design randomized policies in collocated networks, multipartite networks, and general networks, that can achieve delivery ratios much higher than what is achievable by LDF. Further, our results apply to traffic (arrival and deadline) processes that evolve as positive recurrent Markov chains. Hence, this work is an improvement with respect to both efficiency and traffic assumptions compared to the past work. We further present extensive simulation results over various traffic patterns and interference graphs to illustrate the gains of our randomized policies over LDF variants.
Despite the rich literature on scheduling algorithms for wireless networks, algorithms that can provide deadline guarantees on packet delivery for general traffic and interference models are very limited. In this paper, we study the problem of scheduling real-time traffic under a conflict-graph interference model with unreliable links due to channel fading. Packets that are not successfully delivered within their deadlines are of no value. We consider traffic (packet arrival and deadline) and fading (link reliability) processes that evolve as an unknown finite-state Markov chain. The performance metric is efficiency ratio which is the fraction of packets of each link which are delivered within their deadlines compared to that under the optimal (unknown) policy. We first show a conversion result that shows classical non-real-time scheduling algorithms can be ported to the real-time setting and yield a constant efficiency ratio, in particular, Max-Weight Scheduling (MWS) yields an efficiency ratio of 1/2. We then propose randomized algorithms that achieve efficiency ratios strictly higher than 1/2, by carefully randomizing over the maximal schedules. We further propose low-complexity and myopic distributed randomized algorithms, and characterize their efficiency ratio. Simulation results are presented that verify that randomized algorithms outperform classical algorithms such as MWS and GMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.