We characterize optimal mechanisms for the multiple-good monopoly problem and provide a framework to find them. We show that a mechanism is optimal if and only if a measure µ derived from the buyer's type distribution satisfies certain stochastic dominance conditions. This measure expresses the marginal change in the seller's revenue under marginal changes in the rent paid to subsets of buyer types. As a corollary, we characterize the optimality of grand-bundling mechanisms, strengthening several results in the literature, where only sufficient optimality conditions have been derived. As an application, we show that the optimal mechanism for n independent uniform items each supported on [c, c + 1] is a grand-bundling mechanism, as long as c is sufficiently large, extending Pavlov's result for 2 items [Pav11]. At the same time, our characterization also implies that, for all c and for all sufficiently large n, the optimal mechanism for n independent uniform items supported on [c, c + 1] is not a grand bundling mechanism.
We consider K-Facility Location games, where n strategic agents report their locations in a metric space and a mechanism maps them to K facilities. The agents seek to minimize their connection cost, namely the distance of their true location to the nearest facility, and may misreport their location. We are interested in deterministic mechanisms that are strategyproof, that is, ensure that no agent can benefit from misreporting her location, do not resort to monetary transfers, and achieve a bounded approximation ratio to the total connection cost of the agents (or to the L p norm of the connection costs, for some p ∈ [1, ∞) or for p = ∞).Our main result is an elegant characterization of deterministic strategyproof mechanisms with a bounded approximation ratio for 2-Facility Location on the line. In particular, we show that for instances with n ≥ 5 agents, any such mechanism either admits a unique dictator or always places the facilities at the leftmost and the rightmost location of the instance. As a corollary, we obtain that the best approximation ratio achievable by deterministic strategyproof mechanisms for the problem of locating 2 facilities on the line to minimize the total connection cost is precisely n− 2. Another rather surprising consequence is that the TWO-EXTREMES mechanism of Procaccia and Tennenholtz [2009] is the only deterministic anonymous strategyproof mechanism with a bounded approximation ratio for 2-Facility Location on the line.The proof of the characterization employs several new ideas and technical tools, which provide new insights into the behavior of deterministic strategyproof mechanisms for K-Facility Location games and may be of independent interest. Employing one of these tools, we show that for every K ≥ 3, there do not exist any deterministic anonymous strategyproof mechanisms with a bounded approximation ratio for K-Facility Location on the line, even for simple instances with K + 1 agents. Moreover, building on the characterization for the line, we show that there do not exist any deterministic strategyproof mechanisms with a bounded approximation ratio for 2-Facility Location and instances with n ≥ 3 agents located in a star. ACM Reference Format:Dimitris Fotakis and Christos Tzamos. 2014. On the power of deterministic mechanisms for facility location games. ACM Trans. Econom.
Optimal mechanisms have been provided in quite general multi-item settings [4], as long as each bidder's type distribution is given explicitly by listing every type in the support along with its associated probability. In the implicit setting, e.g. when the bidders have additive valuations with independent and/or continuous values for the items, these results do not apply, and it was recently shown that exact revenue optimization is intractable, even when there is only one bidder [8]. Even for item distributions with special structure, optimal mechanisms have been surprisingly rare [13] and the problem is challenging even in the two-item case [10]. In this paper, we provide a framework for designing optimal mechanisms using optimal transport theory and duality theory. We instantiate our framework to obtain conditions under which only pricing the grand bundle is optimal in multi-item settings (complementing the work of [13]), as well as to characterize optimal two-item mechanisms. We use our results to derive closed-form descriptions of the optimal mechanism in several two-item settings, exhibiting also a setting where a continuum of lotteries is necessary for revenue optimization but a closed-form representation of the mechanism can still be found efficiently using our framework.
Myerson's seminal work provides a computationally efficient revenue-optimal auction for selling one item to multiple bidders [18]. Generalizing this work to selling multiple items at once has been a central question in economics and algorithmic game theory, but its complexity has remained poorly understood. We answer this question by showing that a revenue-optimal auction in multi-item settings cannot be found and implemented computationally efficiently, unless ZPP ⊇ P #P . This is true even for a single additive bidder whose values for the items are independently distributed on two rational numbers with rational probabilities. Our result is very general: we show that it is hard to compute any encoding of an optimal auction of any format (direct or indirect, truthful or non-truthful) that can be implemented in expected polynomial time. In particular, under well-believed complexity-theoretic assumptions, revenue-optimization in very simple multi-item settings can only be tractably approximated. We note that our hardness result applies to randomized mechanisms in a very simple setting, and is not an artifact of introducing combinatorial structure to the problem by allowing correlation among item values, introducing combinatorial valuations, or requiring the mechanism to be deterministic (whose structure is readily combinatorial). Our proof is enabled by a flow-interpretation of the solutions of an exponential-size linear program for revenue maximization with an additional supermodularity constraint.
We characterize optimal mechanisms for the multiple‐good monopoly problem and provide a framework to find them. We show that a mechanism is optimal if and only if a measure μ derived from the buyer's type distribution satisfies certain stochastic dominance conditions. This measure expresses the marginal change in the seller's revenue under marginal changes in the rent paid to subsets of buyer types. As a corollary, we characterize the optimality of grand‐bundling mechanisms, strengthening several results in the literature, where only sufficient optimality conditions have been derived. As an application, we show that the optimal mechanism for n independent uniform items each supported on [c,c+1] is a grand‐bundling mechanism, as long as c is sufficiently large, extending Pavlov's result for two items Pavlov, 2011. At the same time, our characterization also implies that, for all c and for all sufficiently large n, the optimal mechanism for n independent uniform items supported on [c,c+1] is not a grand‐bundling mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.