Antimicrobial resistance (AMR) should be tackled through a One Health approach, as stated in the World Health Organization Global Action Plan on AMR. We describe the landscape of AMR surveillance in the European Union/European Economic Area (EU/EEA) and underline a gap regarding veterinary medicine. Current AMR surveillance efforts are of limited help to veterinary practitioners and policymakers seeking to improve antimicrobial stewardship in animal health. We propose to establish the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) to report on the AMR situation, follow AMR trends and detect emerging AMR in selected bacterial pathogens of animals. This information could be useful to advise policymakers, explore efficacy of interventions, support antimicrobial stewardship initiatives, (re-)evaluate marketing authorisations of antimicrobials, generate epidemiological cut-off values, assess risk of zoonotic AMR transmission and evaluate the burden of AMR in animal health. EARS-Vet could be integrated with other AMR monitoring systems in the animal and medical sectors to ensure a One Health approach. Herein, we present a strategy to establish EARS-Vet as a network of national surveillance systems and highlight challenges of data harmonisation and bias. Strong political commitment at national and EU/EEA levels is required for the success of EARS-Vet.
Background Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. Objectives To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. Methods The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). Results EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. Conclusions A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve.
The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others’ experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.
Background: The inappropriate use of antibiotics is a major issue in clinical practice in Greece with serious implications for public health and animal health. The purpose of the present study was to provide a first insight into the use of antibiotics by small animal practitioners in Greece and assess their compliance with general rules for the rational use of antibiotics. This is the first survey of its kind in Greece. Methods: A questionnaire was designed to collect basic information on the use of antibiotics by pet veterinarians. The questionnaire was sent to a total of 70 veterinarians mainly operating in the region of Attica, a region that comprises almost 50% of the Greek population and where veterinarians are engaged solely in small animal practice. The questionnaire consisted of 37 closed questions dealing with various aspects on the use of antibiotics. Results: The majority of practitioners report cases where the pet owner initiated antibiotic treatment without veterinary prescription. Almost every clinician reported owner-compliance challenges. Regarding microbiological analysis, 73% of respondents initiate empirical treatment while waiting for laboratory results or use antibiogram only when the treatment is unsuccessful. Eighty-eight per cent declared to use antimicrobials postoperatively in clean surgical procedures. Different types of antimicrobials and treatment durations than the ones proposed by guidelines on rational use of antibiotics are preferred for various organ systems e.g. in urinary and gastrointestinal infections. Conclusions: Our findings suggest the need for guidelines on antibiotic use in small animal practice in Greece, and the deployment of systematic surveillance on antimicrobials use and resistance to inform the initial choice of antibiotics upon local antimicrobial resistance profiles. Targeting the other end of the problem, pet owners, our findings indicate the need to educate them on the rational use of antibiotics and, critically, stop antibiotic availability without prescription.
Background Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. Objectives The objectives were to (i) define the combinations of animal species, production types, age categories, bacterial species, specimens and antimicrobials to be monitored in EARS-Vet and to (ii) determine antimicrobial test panels able to cover most combinations. Methods The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the European Centre for Disease Prevention and Control (ECDC) and the European Food Safety Authority (EFSA). Results EARS-Vet would monitor AMR in six animal species (cattle, swine, chicken (broiler and laying hen), turkey, cat and dog), for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Three test panels of antimicrobials were proposed covering most EARS-Vet combinations of relevance for veterinary antimicrobial stewardship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.