We consider two approaches that model timetable information in public transportation systems as shortest-path problems in weighted graphs. In the time-expanded approach, every event at a station, e.g., the departure of a train, is modeled as a node in the graph, while in the timedependent approach the graph contains only one node per station. Both approaches have been recently considered for (a simplified version of) the earliest arrival problem, but little is known about their relative performance. Thus far, there are only theoretical arguments in favor of the time-dependent approach. In this paper, we provide the first extensive experimental comparison of the two approaches. Using several real-world data sets, we evaluate the performance of the basic models and of several new extensions towards realistic modeling. Furthermore, new insights on solving bicriteria optimization problems in both models are presented. The time-expanded approach turns out to be more robust for modeling more complex scenarios, whereas the time-dependent approach shows a clearly better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.