The effects of coincubating the active agent of an experimental chlorate product with nitrate or select nitro compounds, possible inducers and competing substrates for the targeted respiratory nitrate reductase, on concentrations of experimentally inoculated Salmonella enterica serovar Typhimurium and indigenous Escherichia coli were determined. Studies were completed in swine fecal suspensions as a prelude to the administration of these inhibitors to pigs. Results confirmed the bactericidal effect of chlorate (5 to 10 mM) against these fecal enterobacteria, reducing (P < 0.05) concentrations by > 2 log CFU ml(-1) after 3 to 6 h of incubation. An effect (P < 0.05) of pH was observed, with considerable regrowth of Salmonella and E. coli occurring after 24 h of incubation in suspensions buffered to pH 7.1 but not in suspensions buffered to pH 6.5 or 5.6. A 24-h coincubation of fecal suspensions with 5 to 10 mM chlorate and as little as 2.5 mM nitrate or 10 to 20 mM 2-nitro-1-propanol, 2-nitroethanol, and, sometimes, nitroethane decreased (P < 0.05) Salmonella but not necessarily E. coli concentrations. 2-Nitro-1-propanol and 2-nitroethanol exhibited inhibitory activity against Salmonella and E. coli by an undetermined mechanism, even in the absence of added chlorate.
Sodium chlorate effectively reduces or eliminates gram-negative pathogenic bacteria in the gastrointestinal tracts of live cattle. Limitations to the in vivo efficacy of chlorate are its rapid absorption from the gastrointestinal tract and its presumed reduction to chloride within the gastrointestinal tract. We hypothesized that chlorate would be reduced via ruminal bacteria in a ruminal in vitro system and that the reduction of chlorate would be influenced by the dietary for-age:concentrate ratio; thus, 4 ruminally cannulated steers were fed 20 or 80% concentrate diets in a crossover design. Ruminal fluid was collected in 2 periods and dispensed into in vitro tubes containing sodium [36Cl]chlorate, which was sufficient for 100 or 300 mg/L final chlorate concentrations. The tubes were incubated for 0, 1, 4, 8, 16, or 24 h; autoclaved, control ruminal fluid, fortified with sodium [36Cl]chlorate, was incubated for 24 h. Chlorate remaining in each sample was measured by liquid scintillation counting after [36Cl]chloride was precipitated with silver nitrate. A preliminary study indicated that chlorite, a possible intermediate in the reduction of chlorate, had a half-life of approximately 4.5 min in freshly collected (live) ruminal fluid; chlorite was, therefore, not specifically measured in ruminal incubations. The chlorate dose did not affect in vitro DM digestion (P > or = 0.11), whereas in vitro DM digestibility was decreased (P < or = 0.05) by 80% forage content. By 24 h, 57.5 +/- 2.6% of the chlorate remained in 100-mg/L incubations, whereas 78.2 +/- 2.6% of the chlorate remained in the 300-mg/L incubations. When the data were expressed on a concentration basis (mg/L), diet had no effect (P > or = 0.18) on chlorate reduction; however, when chlorate reduction was expressed on a percentage basis, chlorate reduction tended to be greater (P > or = 0.09) at 8 and 16 h in the incubations containing the low-concentrate diet. Chlorate remaining in autoclaved controls at 24 h was intermediate (P < 0.01) between chlorate remaining in live ruminal fluid samples incubated for 0 or 24 h. Attempts to isolate chlorate-respiring bacteria from 2 sources of ruminal fluid were not successful. These data indicate that microbial-dependent or chemical-dependent, or both, reduction of chlorate occurs in bovine ruminal fluid and that dietary concentrate had a negligible effect on chlorate reduction.
Salmonella and Escherichia coli are two bacteria that are important causes of human and animal disease worldwide. Chlorate is converted in the cell to chlorite, which is lethal to these bacteria. An HPLC procedure was developed for the rapid analysis of chlorate (ClO(3)(-)), nitrate (NO(3)(-)), and nitrite (NO(2)(-)) ions in bovine ruminal fluid samples. Standard curves for chlorite, nitrite, nitrate, and chlorate were well defined linear curves with R(2) values of 0.99846, 0.99106, 0.99854, and 0.99138, respectively. Concentrations of chlorite could not be accurately determined in bovine ruminal fluid because chlorite reacts with or binds a component(s) or is reduced to chloride in bovine ruminal fluid resulting in low chlorite measurements. A standard curve ranging from 25 to 150 ppm ClO(3)(-) ion was used to measure chlorate fortified into ruminal fluid. The concentration of chlorate was more rapidly lowered (P < 0.01) under anaerobic compared to aerobic incubation conditions. Chlorate alone or chlorate supplemented with the reductants sodium lactate or glycerol were bactericidal in anaerobic incubations. In anaerobic culture, the addition of sodium formate to chlorate-fortified ruminal fluid appeared to decrease chlorate concentrations; however, formate also appeared to moderate the bactericidal effect of chlorate against E. coli. Addition of the reductants, glycerol or lactate, to chlorate-fortified ruminal fluid did not increase the killing of E. coli at 24 h, but may be useful when the reducing equivalents are limiting as in waste holding reservoirs or composting systems required for intense animal production.
For over 100 yr, scientists have explored uses of sodium chlorate in agricultural applications. Sodium chlorate is a strong oxidizer, and thus can be very hazardous when not handled accordingly. Nevertheless, late 19th century agriculturists and scientists attempted to exploit the chemical properties of sodium chlorate as an herbicide and food preservative. It is the herbicidal utility that led to subsequent use of sodium chlorate in the agricultural industry since then. However, in 2000, USDA-ARS scientists proposed a new and targeted use of sodium chlorate against enterobacteria in food animal production. Specifically, when orally dosed in to cattle (Bos taurus), swine (Sus scrofa), broilers (Gallus gallus), turkeys (Meleagris gallopavo), and sheep (Ovis aries), chlorate reduced the fecal shedding of common enteropathogens of the Enterobacteriaceae family. Subsequent to this discovery, the efficacy of chlorate salts has been demonstrated in numerous production classes within species. Doses of sodium chlorate as low as 30 mg/kg BW, but typically 50 to 150 mg/kg BW, have been used to demonstrate efficacy against pathogens. Single or short-duration (<3 d) exposures to oral chlorate at concentrations < 150 mg/kg BW have not produced acute toxicity or clinical signs (labored breathing, methemoglobinemia) in food animals. In all species studied to date, the major biotransformation product of chlorate is chloride ion; chlorite is not present in tissues or excreta of chlorate dosed animals. Chlorate is rapidly eliminated in ruminants and nonruminants, primarily in urine; likewise, residual chlorate in tissues depletes rapidly. Application of any new chemical entity to food animal production carries with it a responsibility to understand adverse reactions that intended and nonintended exposures may have in target and (or) nontarget animals and an understanding of the pathways of elimination that occur after exposure. Therefore, the purpose of this review is to summarize the published data regarding the efficacy, metabolism, and toxicology of chlorate salts in target (livestock) and nontarget species.
Previous research has suggested that nitrate-respiring pathogens such as Escherichia coli O157:H7 and Salmonella spp. are susceptible to chlorate salts due to the conversion of chlorate to chlorite by respiratory nitrate reductase. This study was conducted to determine the effect of chlorate on E. coli O157:H7 growth and chlorate biotransformation and to determine whether chlorite is produced in anaerobic culture of E. coli O157:H7. Final concentrations of E. coli O157:H7 were generally decreased by about 2 log units in incubations containing > or =5 mM chlorate, except when bacteria were pretreated with 10 mM chlorate. [(36)Cl]Chlorate metabolism by pure cultures of E. coli O157:H7 was not measurable above chlorate concentrations of 5 mM, but measurable chlorate reduction occurred in cultures containing 0.5, 1, or 5 mM [(36)Cl]chlorate. Pretreatment of E. coli O157:H7 with 5 mM nitrate did not increase the rate of chlorate conversion to chloride, suggesting that nitrate did not induce nitrate reductase isoforms capable of metabolizing chlorate in E. coli O157:H7. Pure cultures of E. coli O157:H7 preconditioned with 10 mM chlorate had an attenuated ability to transform [(36)Cl]chlorate to [(36)Cl]chloride with measurable chlorate reduction only occurring in 0.5 mM chlorate treatments. The hypothesis that E. coli O157:H7 is sensitive to chlorate by virtue of the reduction of chlorate to chlorite ion (ClO(2)(-)) was supported, but not proven, by the direct measurement of low concentrations of [(36)Cl]ClO(2)(-) in incubation media containing 0.5 mM [(36)Cl]ClO(3)(-). Collectively these results indicate that growth of E. coli O157:H7 in pure culture will be reduced in the presence of 5 mM or greater concentrations of sodium chlorate and that E. coli O157:H7 is capable of producing chlorite ions during the metabolism of chlorate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.