The kidneys play a crucial role in maintaining calcium (Ca2+) and magnesium (Mg2+) homeostasis by regulating these minerals' reabsorption. In the thick ascending limb of Henle's loop (TAL), Ca2+ and Mg2+ are reabsorbed through the tight junctions by a shared paracellular pathway formed by claudin-16 and claudin-19. Hypercalcemia activates the Ca2+-sensing receptor (CaSR) in the TAL, causing upregulation of the pore-blocking claudin-14 (CLDN14) that reduces Ca2+ and Mg2+ reabsorption from this segment. Additionally, a high Mg2+ diet is known to increase both urinary Mg2+ and Ca2+ excretion. Since Mg2+ may also activate the CaSR, we aimed to investigate whether CaSR-dependent increases in CLDN14 expression also regulate urinary Mg2+ excretion in response to hypermagnesemia. Here we show that a Mg2+-enriched diet increased urinary Mg2+ and Ca2+ excretion in mice, however this occurred without detectable changes in renal CLDN14 expression. The administration of a high Mg2+ diet to Cldn14-/- mice did not cause more pronounced hypermagnesemia nor significantly alter urinary Mg2+ excretion. Finally, in vitro evaluation of CaSR-driven Cldn14 promoter activity in response to increasing Mg2+ concentrations revealed that Cldn14 expression only increases at supraphysiological extracellular Mg2+ levels. Together, these results suggest that CLDN14 is not involved in regulating extracellular Mg2+ balance following high dietary Mg2+ intake.
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.