Measurements of the genetic variation and covariation underlying quantitative traits are crucial to our understanding of current evolutionary change and the mechanisms causing this evolution. This fact has spurred a large number of studies estimating heritabilities and genetic correlations in a variety of organisms. Most of these studies have been done in laboratory or greenhouse settings, but it is not well known how accurately these measurements estimate genetic variance and covariance expressed in the field. We conducted a quantitative genetic half-sibling analysis on six floral traits in wild radish. Plants were grown from seed in the field and were exposed to natural environmental variation throughout their lives, including herbivory and intra- and interspecific competition. The estimates of heritabilities and the additive genetic variance-covariance matrix (G) obtained from this analysis were then compared to previous greenhouse estimates of the same floral traits from the same natural population. Heritabilities were much lower in the field for all traits, and this was due to both large increases in environmental variance and decreases in additive genetic variance. Additive genetic covariance expressed was also much lower in the field. These differences resulted in highly significant differences in the G matrix between the greenhouse and field environments using two complementary testing methods. Although the G matrices shared some principal components in common, they were not simply proportional to each other. Therefore, the greenhouse results did not accurately depict how the floral traits would respond to natural selection in the field.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. abstract: Genetic correlations are the most commonly studied of all potential constraints on adaptive evolution. We present a comprehensive test of constraints caused by genetic correlation, comparing empirical results to predictions from theory. The additive genetic correlation between the filament and the corolla tube in wild radish flowers is very high in magnitude, is estimated with good precision ( ), and is caused by pleiotropy. Thus, evolu-0.85 ע 0.06 tionary changes in the relative lengths of these two traits should be constrained. Still, artificial selection produced rapid evolution of these traits in opposite directions, so that in one replicate relative to controls, the difference between them increased by six standard deviations in only nine generations. This would result in a 54% increase in relative fitness on the basis of a previous estimate of natural selection in this population, and it would produce the phenotypes found in the most extreme species in the family Brassicaceae in less than 100 generations. These responses were within theoretical expectations and were much slower than if the genetic correlation was zero; thus, there was evidence for constraint. These results, coupled with comparable results from other species, show that evolution can be rapid despite the constraints caused by genetic correlations.
In outcrossing crops like alfalfa, various bee species can contribute to pollination and gene flow in seed production fields. With the increasing use of transgenic crops, it becomes important to determine the role of these distinct pollinators on alfalfa pollination and gene flow. The current study examines the relative contribution of honeybees, three bumble bee species, and three solitary bee species to pollination and gene flow in alfalfa. Two wild solitary bee species and one wild bumble bee species were best at tripping flowers, while the two managed pollinators commonly used in alfalfa seed production, honeybees and leaf cutting bees, had the lowest tripping rate. Honeybees had the greatest potential for gene flow and risk of transgene escape relative to the other pollinators. For honeybees, gene flow and risk of transgene escape were not affected by plant density although for the three bumble bee species gene flow and risk of transgene escape were the greatest in high-density fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.