Malaria is among the deadliest infectious diseases, and Plasmodium, the causative agent, needs to complete a complex development cycle in its vector mosquito for transmission to occur. Two promising strategies to curb transmission are transgenesis, consisting of genetically engineering mosquitoes to express antimalarial effector molecules, and paratransgenesis, consisting of introducing into the mosquito commensal bacteria engineered to express antimalarial effector molecules. Although both approaches restrict parasite development in the mosquito, it is not known how their effectiveness compares. Here we provide an in-depth assessment of transgenesis and paratransgenesis and evaluate the combination of the two approaches. Using the Q-system to drive gene expression, we engineered mosquitoes to produce and secrete two effectors – scorpine and the MP2 peptide – into the mosquito gut and salivary glands. We also engineered Serratia, a commensal bacterium capable of spreading through mosquito populations to secrete effectors into the mosquito gut. Whereas both mosquito-based and bacteria-based approaches strongly reduced the oocyst and sporozoite intensity, a substantially stronger reduction of Plasmodium falciparum development was achieved when transgenesis and paratransgenesis were combined. Most importantly, transmission of Plasmodium berghei from infected to naïve mice was maximally inhibited by the combination of the two approaches. Combining these two strategies promises to become a powerful approach to combat malaria.
Malaria is among the deadliest infectious diseases. Two promising strategies to curb parasite transmission are transgenesis, consisting of genetically engineering mosquitoes to express anti-malarial effector molecules and paratransgenesis, consisting of introducing into the mosquito, commensal bacteria engineered to express anti-malarial effector molecules. Although both approaches restrict parasite development in the mosquito, it is not known how their effectiveness compares. Here we provide an in-depth assessment of transgenesis and paratransgenesis and evaluate the combination of the two approaches. We engineered mosquitoes and Serratia, a commensal bacterium capable to spread through mosquito populations, to produce and secrete two effectors – scorpine and the MP2 peptide. Whereas the mosquito- and bacteria-based approaches reduced parasite load, a substantially stronger reduction was achieved when they were combined. Most importantly, transmission from infected to naïve mice was maximally inhibited by the combination of the two approaches. This combination promises to become a powerful approach to combat malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.