The Incremental Profile Forming process (IPF) is a new method to manufacture tubes and profiles with variable cross-section design along the centre-line of the profile. The innovative process design enables the combination of high workpiece complexity and high process flexibility. For this reason, a machine concept was developed and finally a prototype realized. The new machine consists of eight numerically controlled axes, which allow the processing of thinwalled tubes and profiles with a maximum diameter of 80 mm. The design of the machine combined with the control system leads to a forming technology with a high degree of flexibility, which is an advantage of the process. Depending on the final workpiece shape the forming process proceeds in several steps and can therefore be considered as an incremental forming process. Furthermore, the tool concept supports both a kinematical and a form-closed forming process.
Bending is a commonly used forming technology in metal forming. The occurring springback and low forming limits of high-strength steels especially during air bending are the main disadvantages. In this paper, the conventional air bending process is applied with a hydrostatic pressure in the bending zone. This was done using an elastomer tool. The advantage of this method is that the flexibility of air bending is maintained by reducing the springback while the forming limits are extended. Furthermore, different geometries for the elastomer tool were investigated by means of a FEM simulation. The investigation leads to a reduction of the process forces by minimizing the springback and to an extension of the forming limits.
During a tube bending process the wall thickness distribution plays an important role concerning the process limits. Especially the wall thinning at the extrados of the tube is crucial. The wall thickness in a combined tube bending and tube spinning process will be analyzed. Therefore, possible stages of complexity are presented to show the possibilities of such a process combination. Based on this the interactions between the bending and spinning process on the wall thickness distribution will be discussed. Finally, a diagram will show how to adjust the wall thickness at the extrados of the tube only by adapting the tube spinning process.
Springback and limited forming limits of modern high strength steels are a big challenge in manufacturing engineering. Both aspects are crucial in sheet metal bending processes. Different modifications of the air bending process have already been developed in order to reduce springback and also to increase the forming limits of materials. A new method (the incremental stress superposition on air bending) has been developed. Studies of this new process alternative show a positive effect on the springback behavior. In order to investigate the potential of this process a comparison with other already established bending processes have been carried out. A possible process control to extend the forming limits has also been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.