Inosine pranobex (IP), commonly known as inosine acedoben dimepranol, isoprinosine and methisoprinol, has been proven to positively impact the host's immune system, by enhancing T-cell lymphocyte proliferation and activity of natural killer cells, increasing levels of proinflammatory cytokines, and thereby restoring deficient responses in immunosuppressed patients. At the same time, it has been shown that it can affect viral RNA levels and hence inhibit growth of several viruses. Due to its immunomodulatory and antiviral properties, and its safety profile, it has been widely used since 1971 against viral infections and diseases, among which subacute sclerosis panencephalitis, herpes simplex virus, human papilloma virus, human immunodeficiency virus, influenza and acute respiratory infections, cytomegalovirus and Epstein-Barr virus infections.Following an analysis of almost five decades of scientific literature since its original approval, we here summarize in vivo and in vitro studies manifesting the means in which IP impacts the host's immune system. We also provide a synopsis of therapeutic trials in the majority of which IP was found to have a beneficial effect. Lastly, positive results from limited studies, suggesting the putative future use of IP in new therapeutic indications are briefly described. In order to support use of IP against viral infections apart from those already approved, and to establish its use in clinical practice, further welldesigned and executed trials are warranted. Funding: Ewopharma International.
A very significant part of the world’s freshwater ichthyofauna is represented by ancient, exceptionally diverse and cosmopolitan ray-finned teleosts of the order Siluriformes. Over the years, catfish have been established as an exemplary model for probing historical biogeography at various scales. Yet, several tantalizing gaps still exist in their phylogenetic history, timeline and mode of diversification. Here, we re-examine the phylogeny of catfish by assembling and analyzing almost all publicly available mitogenome data. We constructed an ingroup matrix of 62 full-length mitogenome sequences from 20 catfish families together with four cypriniform outgroups, spanning 15,557 positions in total. Partitioned maximum likelihood analyses and Bayesian relaxed clock dating using fossil age constraints provide some useful and novel insights into the evolutionary history of this group. Loricarioidei are recovered as the first siluriform group to diversify, rendering Neotropics the cradle of the order. The next deepest clade is the South American Diplomystoidei placed as a sister group to all the remaining Siluroidei. The two multifamilial clades of “Big Asia” and “Big Africa” are also recovered, albeit nodal support for the latter is poor. Within “Big Asia”, Bagridae are clearly polyphyletic. Other interfamilial relationships, including Clariidae + Heteropneustidae, Doradidae + Auchenipteridae and Ictaluridae + Cranoglanididae are robustly resolved. Our chronogram shows that siluriforms have a Pangaean origin, at least as far back as the Early Cretaceous. The inferred timeline of the basal splits corroborates the “Out-of-South America” hypothesis and accords well with the fossil record. The divergence of Siluroidei most likely postdated the final separation of Africa and South America. An appealing case of phylogenetic affinity elaborated by biogeographic dispersal is exemplified by the Early Paleogene split between the Southeast Asian Cranoglanididae and Ictaluridae, with the latter radiating into North America’s freshwater realm by Eocene. The end of Cretaceous probably concludes the major bout of diversification at the family level while with the dawn of the Cenozoic a prolific radiation is evident at the generic level.
We report the characterization of 3 new repetitive sequences from the bivalve mollusc Mytilus galloprovincialis, designated Mg1, Mg2, and Mg3, with monomer lengths of 169, 260, and 70 bp, respectively. The 3 repeats together constitute approximately 7.8% of the M. galloprovincialis genome and were found, together with ApaI-type 2 repeats, inside the introns of 2 genes of the HSP70 family, hsc70 and hsc71. Both the monomer length and the genomic content of the repeats indicate satellite sequences. The Mg1 repetitive region and its flanking sequences exhibit significant homology to CvE, a member of the Pearl family of mobile elements found in the eastern oyster (Crassostrea virginica). Thus, the whole homologous region is designated MgE, the first putative transposable element characterized in M. galloprovincialis. The ApaI, Mg2, and Mg3 repeats are continuously arranged inside the introns of both the hsc70 and hsc71 genes. The presence of perfect inverted repeats flanking the ApaI-Mg2-Mg3 repetitive region, as well as a sequence analysis of the repeats, indicates a transposition-like insertion of this region. The genes of the HSP70 family are highly conserved, and the presence of repetitive DNA or of mobile elements inside their introns is reported here for the first time.
Light detection in animals is predominantly based on the photopigment composed of a protein moiety, the opsin, and the chromophore retinal. Animal opsins originated very early in metazoan evolution from within the G-Protein Coupled Receptor (GPCR) gene superfamily and diversified into several distinct branches prior to the cnidarian-bilaterian split. The origin of opsin diversity, opsin classification and interfamily relationships have been the matter of long-standing debate. Comparative studies of opsins from various Metazoa provide key insight into the evolutionary history of opsins and the visual perception in animals. Here, we have analyzed the genome assembly of the cephalochordate Branchiostoma lanceolatum, applying BLAST, gene prediction tools and manual curation in order to predict de novo its complete opsin repertoire. We investigated the structure of predicted opsin genes, encoded proteins, their phylogenetic placement, and expression. We identified a total of 22 opsin genes in B. lanceolatum, of which 21 are expressed and the remaining one appears to be a pseudogene. According to our phylogenetic analysis, representatives from the three major opsin groups, namely C-type, the R-type and the Group 4, can be identified in B. lanceolatum. Most of the B. lanceolatum opsins exhibit a stage-specific, but not a tissue-specific, expression pattern. The large number of opsins detected in B. lanceolatum, the observed similarities and differences in terms of sequence characteristics and expression patterns lead us to conclude that there may be a fine tuning in opsin utilization in order to facilitate visually-guided behavior of European amphioxus under various environmental settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.