IntroductionVerticality is essential in our life, especially for postural stability. Subjective vertical as well as postural stability depends on different sensorial information: visual, vestibular and somesthesic. They help to build the spatial referentials and create a central representation of verticality. Children are more visuo-dependant than adults; however, we did not find any study focusing on how children develop their sense of verticality.MethodsWe studied two groups of subjects: 10 children (from 6 to 8 years) and 12 young adults. We recorded postural stability with a Techno Concept plateform and perception of subjective visual vertical in the following conditions: while adjusting the vertical in the dark or with visual perturbation, while fixating the vertical bar, and with eyes closed.ResultsChildren are more instable than adults in terms of postural parameters, and also while performing a double task, especially when no visual references are present. They also present a higher variability and lower accuracy than adults in reporting their perception of true vertical reference.DiscussionChildren might have limited attentional resources, and focus their attention on the more demanding task, corresponding to the U-shaped non-linear model.
There is a natural symbiosis between vergence and vestibular responses. Deficits in vergence can lead to vertigo, disequilibrium, and postural instability. This study examines both vergence eye movements in patients with idiopathic bilateral vestibular loss, and their standing balance in relation to vergence. Eleven patients participated in the study and 16 controls. Bilateral loss of vestibular function was objectified with many tests; only patients without significant response to caloric tests, to video head impulse tests and without vestibular evoked myogenic potentials were included in the study.Vergence testing (from 8 patients and 15 controls)A LED display with targets at 20, 40, and 100 cm along the median plane was used to elicit vergence eye movements, recorded with the IRIS device.Standing balance (11 patients and 16 controls)Four conditions were run, each lasting 1 min: fixation of a LED at 40 cm (convergence of 9°), at 150 cm (convergence of 2.3°); this last condition was repeated with eyes closed. Comparison of the eyes closed-eyes open conditions at 150 cm allowed evaluation of the Romberg Quotient. In the forth condition, two LEDS, at 20 and at 100 cm, were light on, one after the other for 1 sec, causing the eyes to converge then diverge. Standing balance was recorded with an accelerometer placed at the back near the center of mass (McRoberts, Dynaport).ResultsVergenceRelative to controls, convergence eye movements in patients showed significantly lower accuracy, lower mean velocity, and saccade intrusions of significantly higher amplitude.BalanceThe normalized 90% area of body sway was significantly higher for patients than for controls for all conditions. Yet, similarly to controls, postural stability was better while fixating at near (sustained convergence) than at far, or while making active vergence movements. We argue that vestibular loss deteriorates convergence, but even deficient, convergence can be helpful for postural control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.