Users frequently seek to fabricate objects whose outer surfaces consist of regions with different surface attributes, such as color or material. Manufacturing such objects in a single piece is often challenging or even impossible. The alternative is to partition them into single-attribute volumetric parts that can be fabricated separately and then assembled to form the target object. Facilitating this approach requires partitioning the input model into parts that conform to the surface segmentation and that can be moved apart with no collisions. We propose Surface2Volume , a partition algorithm capable of producing such assemblable parts, each of which is affiliated with a single attribute, the outer surface of whose assembly conforms to the input surface geometry and segmentation. In computing the partition we strictly enforce conformity with surface segmentation and assemblability, and optimize for ease of fabrication by minimizing part count, promoting part simplicity, and simplifying assembly sequencing. We note that computing the desired partition requires solving for three types of variables: per-part assembly trajectories, partition topology, i.e. the connectivity of the interface surfaces separating the different parts, and the geometry, or location, of these interfaces. We efficiently produce the desired partitions by addressing one type of variables at a time: first computing the assembly trajectories, then determining interface topology, and finally computing interface locations that allow parts assemblability. We algorithmically identify inputs that necessitate sequential assembly, and partition these inputs gradually by computing and disassembling a subset of assemblable parts at a time. We demonstrate our method's robustness and versatility by employing it to partition a range of models with complex surface segmentations into assemblable parts. We further validate our framework via output fabrication and comparisons to alternative partition techniques.
Vector clip-art images consist of regions bounded by a network of vector curves. Users often wish to reshape , or rescale, existing clip-art images by changing the locations, proportions, or scales of different image elements. When reshaping images depicting synthetic content they seek to preserve global and local structures. These structures are best preserved when the gradient of the mapping between the original and the reshaped curve networks is locally as close as possible to a uniform scale; mappings that satisfy this property maximally preserve the input curve orientations and minimally change the shape of the input's geometric details, while allowing changes in the relative scales of the different features. The expectation of approximate scale uniformity is local ; while reshaping operations are typically expected to change the relative proportions of a subset of network regions, users expect the change to be minimal away from the directly impacted regions and expect such changes to be gradual and distributed as evenly as possible. Unfortunately, existing methods for editing 2D curve networks do not satisfy these criteria. We propose a targeted As-Locally-Uniform-as-Possible (ALUP) vector clip-art reshaping method that satisfies the properties above. We formulate the computation of the desired output network as the solution of a constrained variational optimization problem. We effectively compute the desired solution by casting this continuous problem as a minimization of a non-linear discrete energy function, and obtain the desired minimizer by using a custom iterative solver. We validate our method via perceptual studies comparing our results to those created via algorithmic alternatives and manually generated ones. Participants preferred our results over the closest alternative by a ratio of 6 to 1.
Virtual reality drawing applications let users draw 3D shapes using brushes that form ribbon shaped, or ruled-surface, strokes. Each ribbon is uniquely defined by its user-specified ruling length, path, and the ruling directions at each point along this path. Existing brushes use the trajectory of a handheld controller in 3D space as the ribbon path, and compute the ruling directions using a fixed mapping from a specific controller coordinate-frame axis. This fixed mapping forces users to rotate the controller and thus their wrists to change ribbon normal or ruling directions, and requires substantial physical effort to draw even medium complexity ribbons. Since human ability to rotate their wrists continuously is heavily restricted, the space of ribbon geometries users can comfortably draw using these brushes is limited. These brushes can be unpredictable, producing ribbons with unexpectedly varying width or flipped and wobbly normals in response to seemingly natural hand gestures. Our AdaptiBrush ribbon brush system dramatically extends the space of ribbon geometries users can comfortably draw while enabling them to accurately predict the ribbon shape that a given hand motion produces. We achieve this by introducing a novel adaptive ruling direction computation method, enabling users to easily change ribbon ruling and normal orientation using predominantly translational controller, and thus wrist, motion. We facilitate ease-of-use by computing predictable ruling directions that smoothly change in both world and controller coordinate systems, and facilitate ease-of-learning by prioritizing ruling directions which are well-aligned with one of the controller coordinate system axes. Our comparative user studies confirm that our more general and predictable ruling computation leads to significant improvements in brush usability and effectiveness compared to all prior brushes; in a head to head comparison users preferred AdaptiBrush over the next-best brush by a margin of 2 to 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.