BackgroundInformed estimates claim that 80% to 99% of alarms set off in hospital units are false or clinically insignificant, representing a cacophony of sounds that do not present a real danger to patients. These false alarms can lead to an alert overload that causes a health care provider to miss important events that could be harmful or even life-threatening. As health care units become more dependent on monitoring devices for patient care purposes, the alarm fatigue issue has to be addressed as a major concern for the health care team as well as to enhance patient safety.ObjectiveThe main goal of this paper was to propose a feasible solution for the alarm fatigue problem by using an automatic reasoning mechanism to decide how to notify members of the health care team. The aim was to reduce the number of notifications sent by determining whether or not to group a set of alarms that occur over a short period of time to deliver them together, without compromising patient safety.MethodsThis paper describes: (1) a model for supporting reasoning algorithms that decide how to notify caregivers to avoid alarm fatigue; (2) an architecture for health systems that support patient monitoring and notification capabilities; and (3) a reasoning algorithm that specifies how to notify caregivers by deciding whether to aggregate a group of alarms to avoid alarm fatigue.ResultsExperiments were used to demonstrate that providing a reasoning system can reduce the notifications received by the caregivers by up to 99.3% (582/586) of the total alarms generated. Our experiments were evaluated through the use of a dataset comprising patient monitoring data and vital signs recorded during 32 surgical cases where patients underwent anesthesia at the Royal Adelaide Hospital. We present the results of our algorithm by using graphs we generated using the R language, where we show whether the algorithm decided to deliver an alarm immediately or after a delay.ConclusionsThe experimental results strongly suggest that this reasoning algorithm is a useful strategy for avoiding alarm fatigue. Although we evaluated our algorithm in an experimental environment, we tried to reproduce the context of a clinical environment by using real-world patient data. Our future work is to reproduce the evaluation study based on more realistic clinical conditions by increasing the number of patients, monitoring parameters, and types of alarm.
BackgroundAlthough there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical.ObjectiveThe objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step.MethodsA framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework’s flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health’s operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents.ResultsIoT4Health’s construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers.ConclusionsWe conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion.
Background Although alarm safety is a critical issue that needs to be addressed to improve patient care, hospitals have not given serious consideration about how their staff should be using, setting, and responding to clinical alarms. Studies have indicated that 80%-99% of alarms in hospital units are false or clinically insignificant and do not represent real danger for patients, leading caregivers to miss relevant alarms that might indicate significant harmful events. The lack of use of any intelligent filter to detect recurrent, irrelevant, and/or false alarms before alerting health providers can culminate in a complex and overwhelming scenario of sensory overload for the medical team, known as alarm fatigue. Objective This paper’s main goal is to propose a solution to mitigate alarm fatigue by using an automatic reasoning mechanism to decide how to calculate false alarm probability (FAP) for alarms and whether to include an indication of the FAP (ie, FAP_LABEL) with a notification to be visualized by health care team members designed to help them prioritize which alerts they should respond to next. Methods We present a new approach to cope with the alarm fatigue problem that uses an automatic reasoner to decide how to notify caregivers with an indication of FAP. Our reasoning algorithm calculates FAP for alerts triggered by sensors and multiparametric monitors based on statistical analysis of false alarm indicators (FAIs) in a simulated environment of an intensive care unit (ICU), where a large number of warnings can lead to alarm fatigue. Results The main contributions described are as follows: (1) a list of FAIs we defined that can be utilized and possibly extended by other researchers, (2) a novel approach to assess the probability of a false alarm using statistical analysis of multiple inputs representing alarm-context information, and (3) a reasoning algorithm that uses alarm-context information to detect false alarms in order to decide whether to notify caregivers with an indication of FAP (ie, FAP_LABEL) to avoid alarm fatigue. Conclusions Experiments were conducted to demonstrate that by providing an intelligent notification system, we could decide how to identify false alarms by analyzing alarm-context information. The reasoner entity we described in this paper was able to attribute FAP values to alarms based on FAIs and to notify caregivers with a FAP_LABEL indication without compromising patient safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.