Graphene has a range of unique physical properties and could be of use in the development of a variety of electronic, photonic and photovoltaic devices. For most applications, large-area high-quality graphene films are required and chemical vapour deposition (CVD) synthesis of graphene on copper surfaces has been of particular interest due to its simplicity and cost effectiveness. However, the rates of growth for graphene by CVD on copper are less than 0.4 μm s, and therefore the synthesis of large, single-crystal graphene domains takes at least a few hours. Here, we show that single-crystal graphene can be grown on copper foils with a growth rate of 60 μm s. Our high growth rate is achieved by placing the copper foil above an oxide substrate with a gap of ∼15 μm between them. The oxide substrate provides a continuous supply of oxygen to the surface of the copper catalyst during the CVD growth, which significantly lowers the energy barrier to the decomposition of the carbon feedstock and increases the growth rate. With this approach, we are able to grow single-crystal graphene domains with a lateral size of 0.3 mm in just 5 s.
Local infections can trigger immune responses in distant organs, and this interorgan immunological crosstalk helps maintain immune homeostasis. We find that enterobacterial infection or chemically and genetically stimulating reactive oxygen species (ROS)-induced stress responses in the Drosophila gut triggers global antimicrobial peptide (AMP) responses in the fat body, a major immune organ in flies. ROS stress induces nitric oxide (NO) production in the gut, which triggers production of the AMP Diptericin, but not Drosomycin, in the fat body. Hemocytes serve as a signaling relay for communication between intestinal ROS/NO signaling and fat body AMP responses. The induction of AMP responses requires Rel/NF-κB activation within the fat body. Although Rel-mediated Drosomycin induction is repressed by the AP-1 transcription factor, this repressor activity is inhibited by intestinal ROS. Thus, intestinal ROS signaling plays an important role in initiating gut-to-fat body immunological communication in Drosophila.
Peroxisome proliferator-activated receptor gamma (PPARgamma) is well-known as the receptor of thiazolidinedione antidiabetic drugs. In this paper, we present a successful example of employing structure-based virtual screening, a method that combines shape-based database search with a docking study and analogue search, to discover a novel family of PPARgamma agonists based upon pyrazol-5-ylbenzenesulfonamide. Two analogues in the family show high affinity for, and specificity to, PPARgamma and act as partial agonists. They also demonstrate glucose-lowering efficacy in vivo. A structural biology study reveals that they both adopt a distinct binding mode and have no H-bonding interactions with PPARgamma. The absence of H-bonding interaction with the protein provides an explanation why both function as partial agonists since most full agonists form conserved H-bonds with the activation function helix (AF-2 helix) which, in turn, enhances the recruitment of coactivators. Moreover, the structural biology and computer docking studies reveal the specificity of the compounds for PPARgamma could be due to the restricted access to the binding pocket of other PPAR subtypes, i.e., PPARalpha and PPARdelta, and steric hindrance upon the ligand binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.