A thermodynamic model of basic and recuperative transcritical organic Rankine cycles (TRCs) associated with using five pure and six mixed fluids as working fluids has been developed. This model can be employed to investigate the effects of recuperators at inlet expander temperatures (Texp,in) of 150–200°C and inlet expander pressures (Pexp,in) of 3.7–6.9 MPa. The ratio of change (ROC) of the first‐ and second‐law efficiencies (ηI and ηII) was positively correlated with the heat transfer rate of the recuperator and exhibited an opposite trend for a specific volume ratio. ROC was substantially affected by operating parameters and working fluid. However, the recuperator heat transfer rate was negligibly affected by the mixture temperature glide (Tglide). A universal empirical equation of ηI,II was proposed for both TRC configurations. The equation, a function of the specific volume ratio, can predict the system efficiencies for pure and mixed fluids, even if a mixture has an arbitrary mole fraction. As Tglide of R600a‐base mixture and R245fa/R134a was lower than 16 K, they had low error rates and low standard deviations. Finally, the equation was highly accurate in ηII prediction, particularly at a Texp,in of 160°C and 170°C and a Pexp,in of 4.9–5.8 MPa.
In this study, thermodynamic analysis was performed on basic and recuperative transcritical organic Rankine cycles by using five pure and six mixed fluids. The effects of evaporation parameters on the first- and second-law efficiencies (ηI and ηII) as well as power output were investigated. The results indicate that a recuperator had a positive effect on the ηI and ηII and negative effects on the specific power. The total irreversibility of the system was improved by the recuperator. However, the total irreversibility considerably increased with an increase in the expander inlet temperature (Texp,in) due to the significant increase in irreversibility in the condenser, particularly for working fluids with low critical temperatures, namely R134a, R1234yf and R290, and low proportions of R245fa and R600a in mixed fluids. For both the pure and mixed fluids, the specific power linearly increased with an increase in the expander inlet pressure (Pexp,in) and Texp,in. However, with an increase in Pexp,in, the ηI and ηII first increased and then decreased. Finally, for ηI and ηII, the effect of the recuperator increased with an increase in Texp,in even though the recuperator had a relatively small effect on the working fluids with high critical temperature, especially when Pexp,in was high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.