In arXiv:0901.3543, the simplest Yukawa coupling ηΨφχΨ was considered for a two-scalargenerated Bloch brane model. Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with internal structure. Inspired on this result, we investigate the localization and resonance spectrum of fermions on a one-scalar-generated dS thick brane with a class of scalar-fermion couplings ηΨφ k Ψ with positive odd integer k. A set of massive fermionic resonances for both chiralities are obtained when provided large couple constant η. We find that the masses and life-times of left and right chiral resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions from the left and right chiral resonances.The resonance with lower mass has longer life-time. For a same set of parameters, the number of resonances increases with k and the life-time of the lower level resonance for larger k is much longer than the one for smaller k.
It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies 1 ffiffi 3 p a M 1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.
Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time‐resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk‐to‐surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold‐coordinated Ti sites (Ti4c) at which CH3OH molecules dissociate to form the CH3O adsorbate (CH3O(a)Ti4c). CH3O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk‐to‐surface hole migration. CH3O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.