Abstract. Recently, promising results have been shown on face recognition researches. However, face recognition and retrieval across age is still challenging. Unlike prior methods using complex models with strong parametric assumptions to model the aging process, we use a data-driven method to address this problem. We propose a novel coding framework called Cross-Age Reference Coding (CARC). By leveraging a large-scale image dataset freely available on the Internet as a reference set, CARC is able to encode the low-level feature of a face image with an ageinvariant reference space. In the testing phase, the proposed method only requires a linear projection to encode the feature and therefore it is highly scalable. To thoroughly evaluate our work, we introduce a new large-scale dataset for face recognition and retrieval across age called Cross-Age Celebrity Dataset (CACD). The dataset contains more than 160,000 images of 2,000 celebrities with age ranging from 16 to 62. To the best of our knowledge, it is by far the largest publicly available crossage face dataset. Experimental results show that the proposed method can achieve state-of-the-art performance on both our dataset as well as the other widely used dataset for face recognition across age, MORPH dataset.
This paper presents a simple yet effective supervised deep hash approach that constructs binary hash codes from labeled data for large-scale image search. We assume that the semantic labels are governed by several latent attributes with each attribute on or off, and classification relies on these attributes. Based on this assumption, our approach, dubbed supervised semantics-preserving deep hashing (SSDH), constructs hash functions as a latent layer in a deep network and the binary codes are learned by minimizing an objective function defined over classification error and other desirable hash codes properties. With this design, SSDH has a nice characteristic that classification and retrieval are unified in a single learning model. Moreover, SSDH performs joint learning of image representations, hash codes, and classification in a point-wised manner, and thus is scalable to large-scale datasets. SSDH is simple and can be realized by a slight enhancement of an existing deep architecture for classification; yet it is effective and outperforms other hashing approaches on several benchmarks and large datasets. Compared with state-of-the-art approaches, SSDH achieves higher retrieval accuracy, while the classification performance is not sacrificed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.