Asymmetric Janus and ternary silica particles with an average diameter of 450 nm were fabricated by sequentially arranged particle-embedding and surface-modification processes. Thermally induced embedding of particles into polymer-fiber substrates allowed for precise control of the degree of particle submergence and the subsequent chemical modification of the hemispherical exposed particle surfaces. In addition to Janus particles with the desired surface-functionality ratios of 1:2, 1:1, and 2:1, this unique fabrication approach was also used to produce complicated and well-defined heterogeneous materials, including bifunctionalized Janus and ternary particles. The bifunctionalized Janus particles were produced with two hemispherical surfaces alternately labeled with gold and iron oxide nanoparticles, which simultaneously enabled anisotropic surface-plasmon resonance and a magnetic response. Ternary particles were also constructed, yielding submicrometer spheres with functionalized equatorial belts. The surface distributions of functional components in these spherical materials were carefully examined for uniformities in particle embedding. Statistical analyses revealed that the functional components were distributed with a uniformity of over 80% for all of the asymmetric Janus and ternary particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.