The motivation behind our work is to review and analyze the most relevant studies on deep reinforcement learning-based object manipulation. Various studies are examined through a survey of existing literature and investigation of various aspects, namely, the intended applications, techniques applied, challenges faced by researchers and recommendations for minimizing obstacles. This review refers to all relevant articles on deep reinforcement learning-based object manipulation and solutions. The object grasping issue is a major manipulation challenge. Object grasping requires detection systems, methods and tools to facilitate efficient and fast agent training. Several studies have proposed that object grasping and its subtypes are the main elements in dealing with the environment and agent. Unlike other review articles, this review article provides different observations on deep reinforcement learning-based manipulation. The results of this comprehensive review of deep reinforcement learning in the manipulation field may be valuable for researchers and practitioners because they can expedite the establishment of important guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.