This paper proposes to apply the continuous vector representations of words for discovering keywords from a financial sentiment lexicon. In order to capture more keywords, we also incorporate syntactic information into the Continuous Bag-ofWords (CBOW) model. Experimental results on a task of financial risk prediction using the discovered keywords demonstrate that the proposed approach is good at predicting financial risk.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-theart recommendation methods.
The growing amount of public financial data makes it increasingly important to learn how to discover valuable information for financial decision making. This article proposes an approach to discovering financial keywords from a large number of financial reports. In particular, we apply the continuous bag-of-words (CBOW) model, a well-known continuous-space language model, to the textual information in 10-K financial reports to discover new finance keywords. In order to capture word meanings to better locate financial terms, we also present a novel technique to incorporate syntactic information into the CBOW model. Experimental results on four prediction tasks using the discovered keywords demonstrate that our approach is effective for discovering predictability keywords for post-event volatility, stock volatility, abnormal trading volume, and excess return predictions. We also analyze the discovered keywords that attest to the ability of the proposed method to capture both syntactic and contextual information between words. This shows the success of this method when applied to the field of finance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.