Low-dimensional nanoparticles have a strong ability to induce the crystallization of polymer matrices. One-dimensional carbon nanotubes (CNTs) and two-dimensional graphene nanosheets (GNSs), both of which are both carbon-based nanoparticles, provide a good opportunity to investigate the effects of differently dimensional nanoparticles on the crystallization behavior of a polymer. For this purpose, respective nanocomposites of CNTs and GNSs with poly(l-lactide) (PLLA) as matrix were prepared by solution coagulation. Time-resolved Fourier-transform infrared spectroscopy (FTIR) and synchrotron wide-angle X-ray diffraction (WAXD) were performed to probe chain conformational changes and to determine the crystallization kinetics during the isothermal crystallization of the PLLA nanocomposites and neat PLLA, especially in the early stages. Both CNTs and GNSs could serve as nucleating agents in accelerating the crystallization kinetics of PLLA; however, the ability of CNTs to induce crystallization was stronger than that of GNSs. On increasing the content of CNTs from 0.05 to 0.1 wt %, the induction period was shortened and the crystallization rate was enhanced, but the reverse situation was found for GNSs nanocomposites. In the case of neat PLLA, −CH3 interchain interactions preceded −(COC + CH3) interchain interactions during the crystallization. Conversely, in the CNTs and GNSs nanocomposites, the conformational ordering began with −(COC + CH3) interchain interactions, which resulted directly in a reduced induction period. Interchain interactions of this type could be explained in terms of surface-induced conformational order (SICO). Finally, the effect of the dimensionality of the nanoparticles on the crystallization behavior of PLLA is discussed.
The mechanism of N-demethylation of N,N-dimethylanilines (DMAs) by cytochrome P450, a highly debated topic in mechanistic bioinorganic chemistry (Karki, S. B.; Dinnocenczo, J. P.; Jones, J. P.; Korzekwa, K. R. J. Am. Chem. Soc. 1995, 117, 3657), is studied here using DFT calculations of the reactions of the active species of the enzyme, Compound I (Cpd I), with four para-(H, Cl, CN, NO2) substituted DMAs. The calculations resolve mechanistic controversies, offer a consistent mechanistic view, and reveal the following features: (a) the reaction pathways involve C-H hydroxylation by Cpd I followed by a nonenzymatic carbinolamine decomposition. (b) C-H hydroxylation is initiated by a hydrogen atom transfer (HAT) step that possesses a "polar" character. As such, the HAT energy barriers correlate with the energy level of the HOMO of the DMAs. (c) The series exhibits a switch from spin-selective reactivity for DMA and p-Cl-DMA to two-state reactivity, with low- and high-spin states, for p-CN-DMA and p-NO2-DMA. (d) The computed kinetic isotope effect profiles (KIEPs) for these scenarios match the experimentally determined KIEPs. Theory further shows that the KIEs and TS structures vary in a manner predicted by the Melander-Westheimer postulate: as the substituent becomes more electron withdrawing, the TS is shifted to a later position along the H-transfer coordinate and the corresponding KIEs increases. (e) The generated carbinolaniline can readily dissociate from the heme and decomposes in a nonenzymatic environment, which involves water assisted proton shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.