IntroductionEmerging evidence suggests that microRNAs (miRNAs) are crucially involved in tumorigenesis and that paired expression profiles of miRNAs and mRNAs can be used to identify functional miRNA-target relationships with high precision. However, no studies have applied integrated analysis to miRNA and mRNA profiles in chordomas. The purpose of this study was to provide insights into the pathogenesis of chordomas by using this integrated analysis method.MethodsDifferentially expressed miRNAs and mRNAs of chordomas (n = 3) and notochord tissues (n = 3) were analyzed by using microarrays with hierarchical clustering analysis. Subsequently, the target genes of the differentially expressed miRNAs were predicted and overlapped with the differentially expressed mRNAs. Then, GO and pathway analyses were performed for the intersecting genes.ResultsThe microarray analysis indicated that 33 miRNAs and 2,791 mRNAs were significantly dysregulated between the two groups. Among the 2,791 mRNAs, 911 overlapped with putative miRNA target genes. A pathway analysis showed that the MAPK pathway was consistently enriched in the chordoma tissue and that miR-149-3p, miR-663a, miR-1908, miR-2861 and miR-3185 likely play important roles in the regulation of MAPK pathways. Furthermore, the Notch signaling pathway and the loss of the calcification or ossification capacity of the notochord may also be involved in chordoma pathogenesis.ConclusionThis study provides an integrated dataset of the miRNA and mRNA profiles in chordomas, and the results demonstrate that not only the MAPK pathway and its related miRNAs but also the Notch pathway may be involved in chordoma development. The occurrence of chordoma may be associated with dysfunctional calcification or ossification of the notochord.
Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small interfering RNA (siRNA) to the cytoplasm of KB cells (oral squamous cell carcinoma) that were subjected to PDT. Wnt-1 siRNA effectively inhibited the Wnt/β-catenin signaling pathway, reducing the expression of Wnt-1, β-catenin and vimentin that are crucial to the EMT. Combined with Wnt-1 siRNA, PEG-PEI-Ce6 nanoparticle mediated PDT inhibited cell growth and enhanced the cancer cell killing effect remarkably. Our results show the promise of combination therapy of PEG-PEI-Ce6 nanoparticles for delivery of Wnt-1 siRNA along with PDT in the treatment of oral cancer.
Background: Due to the lack of research on the pathological mechanism of temporomandibular joint osteoarthritis (TMJOA), there are few effective treatment measures in the clinic. In recent years, microRNAs (miRs) have been demonstrated to play an important role in the pathogenesis of osteoarthritis (OA) by regulating a variety of target genes, and the latest evidence shows that miR-21-5p is specifically overexpressed in OA. The purpose of this project was to clarify whether miR-21-5p can regulate the TMJOA process by targeting Spry1. Methods: TMJOA was induced by a unilateral anterior crossbite (UAC) model, and the effect of miR-21-5p knockout on TMJOA was evaluated by toluidine blue (TB), immunohistochemical (IHC) staining, Western blotting (WB) and RT-qPCR. Primary mouse condylar chondrocytes (MCCs) were isolated, cultured and transfected with a series of mimics, inhibitors, siRNA-Spry1 or cDNA Spry1. WB, RT-qPCR, IHC and TB were used to detect the effect of miR-21-5p and its target gene Spry1 on the expression of MMP-13, VEGF and p-ERK1/2 in TMJOA. The effect of miR-21-5p on angiogenesis was evaluated by chick embryo chorioallantoic membrane (CAM) assay and WB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.