Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
Objectives. Asymptomatic and symptomatic patients may transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their clinical features and immune responses remain largely unclear. We aimed to characterise the clinical features and immune responses of asymptomatic and symptomatic patients infected with SARS-CoV-2. Methods. We collected clinical, laboratory and epidemiological records of patients hospitalised in a coronavirus field hospital in Wuhan. We performed qualitative detection of anti-SARS-CoV-2 immunoglobulin M (IgM) and immunoglobulin G (IgG) using archived blood samples. Results. Of 214 patients with SARS-CoV-2, 26 (12%) were asymptomatic at hospital admission and during hospitalisation. Most asymptomatic patients were ≤ 60 years (96%) and females (65%) and had few comorbidities (< 16%). Serum levels of white and red blood cells were higher in asymptomatic than in symptomatic patients (Pvalues < 0.05). During hospitalisation, IgG seroconversion was commonly observed in both asymptomatic and symptomatic patients (85% versus 94%, P-value = 0.07); in contrast, IgM seroconversion was less common in asymptomatic than in symptomatic patients (31% versus 74%, P-value < 0.001). The median time from the first virus-positive screening to IgG or IgM seroconversion was significantly shorter in asymptomatic than in symptomatic patients (median: 7 versus 14 days, P-value < 0.01). Furthermore, IgG/IgM seroconversion rates increased
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.