Fringe projection profilometry is widely used in 3D structured light due to its fast speed and accuracy. However, in the process of phase unwrapping, it is easy to cause invalid points in the edges and shadows of objects, which leads to error points in 3D reconstruction. To solve this problem, we propose an invalid points removal method based on Markov random fields. Specifically, the proposed method formulates unwrapped phase and mask maps as energy functions and uses iterative methods to minimize them. Furthermore, we validate the proposed method in a monocular structured light system and compare it with existing algorithms. Results show that the proposed method effectively identifies edges and shadows while preserving valid points, and has strong robustness and correctness.
Learning semantic representations of documents is essential for various downstream applications, including text classification and information retrieval. Entities, as important sources of information, have been playing a crucial role in assisting latent representations of documents. In this work, we hypothesize that entities are not monolithic concepts; instead they have multiple aspects, and different documents may be discussing different aspects of a given entity. Given that, we argue that from an entity-centric point of view, a document related to multiple entities shall be (a) represented differently for different entities (multiple entity-centric representations), and (b) each entity-centric representation should reflect the specific aspects of the entity discussed in the document.In this work, we devise the following research questions: (1) Can we confirm that entities have multiple aspects, with different aspects reflected in different documents, (2) can we learn a representation of entity aspects from a collection of documents, and a representation of document based on the multiple entities and their aspects as reflected in the documents, (3) does this novel representation improves algorithm performance in downstream applications, and ( 4) what is a reasonable number of aspects per entity? To answer these questions we model each entity using multiple aspects (entity facets 1 ), where each entity facet is represented as a mixture of latent topics. Then, given a document associated with multiple entities, we assume multiple entitycentric representations, where each entity-centric representation is a mixture of entity facets for each entity. Finally, a novel graphical model, the Entity Facet Topic Model (EFTM), is proposed in order to learn entity-centric document representations, entity facets, and latent topics.Through experimentation we confirm that (1) entities are multi-faceted concepts which we can model and learn, (2) a multi-faceted entity-centric modeling of documents can lead to effective representations, which (3) can have an impact in downstream application, and (4) considering a small number of facets is effective enough. In particular, we visualize entity facets within a set of documents, and demonstrate that indeed different sets of documents reflect different facets of entities. Further, we demonstrate that the proposed entity facet topic model generates better document representations in terms of perplexity, compared to state-of-the-art document representation methods. Moreover, we show that the proposed model outperforms baseline methods in the application of multi-label classification. Finally, we study the impact of EFTM's parameters and find that a small number of facets better captures entity specific topics, which confirms the intuition that on average an entity has a small number of facets reflected in documents.
Entities play an essential role in understanding textual documents, regardless of whether the documents are short, such as tweets, or long, such as news articles. In short textual documents, all entities mentioned are usually considered equally important because of the limited amount of information. In long textual documents, however, not all entities are equally important: some are salient and others are not. Traditional entity topic models (ETMs) focus on ways to incorporate entity information into topic models to better explain the generative process of documents. However, entities are usually treated equally, without considering whether they are salient or not. In this work, we propose a novel ETM, Salient Entity Topic Model, to take salient entities into consideration in the document generation process. In particular, we model salient entities as a source of topics used to generate words in documents, in addition to the topic distribution of documents used in traditional topic models. Qualitative and quantitative analysis is performed on the proposed model. Application to entity salience detection demonstrates the effectiveness of our model compared to the state-of-the-art topic model baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.