Interleukin 17 (IL-17)-producing TH17 cells are often present at the sites of tissue inflammation in autoimmune diseases, which has lead to the conclusion that TH17 are main drivers of autoimmune tissue injury. However, not all TH17 cells are pathogenic, in fact TH17 generated with TGF-β1 and IL-6 produce IL-17 but do not readily induce autoimmune disease without further exposure to IL-23. Here we show that TGF-β3, produced by developing TH17 cells, is dependent on IL-23, which together with IL-6 induces highly pathogenic TH17 cells. Moreover, TGF-β3-induced TH17 cells are functionally and molecularly distinct from TGF-β1-induced TH17 cells and possess a molecular signature that defines pathogenic effector TH17 cells in autoimmune disease.
Th17 cells are highly proinflammatory cells critical for clearing extracellular pathogens and for induction of multiple autoimmune diseases1. IL-23 plays a critical role in stabilizing and reinforcing the Th17 phenotype by increasing expression of IL-23 receptor (IL-23R) and endowing Th17 cells with pathogenic effector functions2, 3. However, the precise molecular mechanism by which IL-23 sustains the Th17 response and induces pathogenic effector functions has not been elucidated. Here, we used transcriptional profiling of developing Th17 cells to construct a model of their signaling network and nominate major nodes that regulate Th17 development. We identified serum glucocorticoid kinase-1 (SGK1), a serine-threonine kinase4, as an essential node downstream of IL-23 signaling. SGK1 is critical for regulating IL-23R expression and stabilizing the Th17 cell phenotype by deactivation of Foxo1, a direct repressor of IL-23R expression. SGK1 has been shown to govern Na+ transport and salt (NaCl) homeostasis in other cells5, 6, 7, 8. We here show that a modest increase in salt concentration induces SGK1 expression, promotes IL-23R expression and enhances Th17 cell differentiation in vitro and in vivo, accelerating the development of autoimmunity. Loss of SGK1 abrogated Na+-mediated Th17 differentiation in an IL-23-dependent manner. These data demonstrate that SGK1 plays a critical role in the induction of pathogenic Th17 cells and provides a molecular insight into a mechanism by which an environmental factor such as a high salt diet triggers Th17 development and promotes tissue inflammation.
Western lifestyle with high salt consumption leads to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper (TH)17 cells, which may also contribute to hypertension. Induction of TH17 cells depends on the gut microbiota, yet the effect of salt on the gut microbiome is unknown. In mouse model systems, we show that high salt intake affects the gut microbiome, particularly by depleting Lactobacillus murinus. Consequently, L. murinus treatment prevents salt-induced aggravation of actively-induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension, by modulating TH17 cells. In line with these findings, moderate high salt challenge in a pilot study in humans reduces intestinal survival of Lactobacillus spp. along with increased TH17 cells and blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.