Carotenoids play important roles in many biological processes, such as light harvesting, photoprotection and visual attraction in plants. However, the regulation of carotenoid biosynthesis is still not fully understood. Here, we demonstrate that SlBBX20, a B-box (BBX) zinc-finger transcription factor, is a positive regulator of carotenoid accumulation in tomato (Solanum lycopersicum). Overexpression of SlBBX20 leads to dark green fruits and leaves and higher levels of carotenoids relative to the wild-type. Interactions between SlBBX20 and DE-ETIOLATED 1 (SlDET1) lead to the ubiquitination and 26S proteasome-mediated degradation of SlBBX20. Moreover, deficiencies in the components of the CUL4-DDB1-DET1 complex enhanced the stability of the SlBBX20 protein. Thus, we conclude that SlBBX20 is a substrate of the CUL4-DDB1-DET1 E3 ligase. SlBBX20 can activate the expression of PHYTOENE SYNTHASE 1, encoding a key enzyme in carotenoid biosynthesis, by directly binding to a G-box motif in its promoter, which results in the elevated levels of carotenoids in SlBBX20 overexpression lines. We identified a key regulator of carotenoid biosynthesis and demonstrated that the stability of SlBBX20 is regulated by ubiquitination. These findings provide us a new target for the genetic improvement of the nutritional quality of tomato fruit.
Trichomes originate from the epidermal cells of nearly all terrestrial plants, which are specialized unicellular or multicellular structures. Although the molecular mechanism regulating unicellular trichome formation has been extensively characterized, most of the genes essential for multicellular trichome formation remain unknown. In this study, we identified an associated locus on the long arm of chromosome 10 using a genome-wide association study (GWAS) on type-I trichomes of 180 diverse Solanum lycopersicum (tomato) accessions. Using map-based cloning we then cloned the key gene controlling the initiation of this type of trichome, named Hair (H), which encodes a single C2H2 zinc-finger protein. Transgenic experiments showed that hair-absent phenotype is caused by the deletion of the entire coding region of H. We identified three alleles of H containing several missense mutations and a nucleotide deletion, which result in amino acid substitutions and a reading frame shift, respectively. In addition, knockdown of H or Woolly (Wo) represses the formation of type-I trichomes, suggesting that both regulators may function as a heterodimer. Direct protein-protein interaction between them was further detected through pull-down and yeast two-hybrid assays. In addition, ectopic expression of H in Nicotiana tabacum (tobacco) and expression of its homologs from Capsicum annuum (pepper) and tobacco in tomato can trigger trichome formation. Taken together, these findings suggest that the H gene may be functionally conserved in multicellular trichome formation in Solanaceae species.
Macrofungus is defined as the fungus that grows an observable sporocarp. The sporocarps of many species are commonly called mushrooms and consumed by people all around the world as food and/or medicine. Most macrofungi belong to the divisions Basidiomycetes and Ascomycetes, which are estimated to contain more than 80,000 species in total. We report the draft genome assemblies of macrofungi (83 Basidiomycetes species and 7 Ascomycetes species) based on Illumina sequencing. The genome sizes of these species ranged from 27.4 Mb (Hygrophorus russula) to 202.2 MB (Chroogomphus rutilus). The numbers of protein-coding genes were predicted in the range of 9,511 (Hygrophorus russula) to 52,289 (Craterellus lutescens). This study provides the largest genomic dataset for macrofungi species. This resource will facilitate the artificial cultivation of edible mushrooms and the discovery of novel drug candidates.
BackgroundTrichomes, developing from the epidermis of nearly all terrestrial plants, provide good structural resistance against insect herbivores and an excellent model for studying the molecular mechanisms underlying cell fate determination. Regulation of trichomes in Rosids has been well characterized. However, little is known about the cell proliferation molecular processes during multicellular trichome formation in Asterids.ResultsIn this study, we identified two point mutations in a novel allele (Wov) at Wo locus. Ectopic expression of Wov in tobacco and potato induces much more trichome formation than wild type. To gain new insights into the underlying mechanisms during the processes of these trichomes formation, we compared the gene expression profiles between Wov transgenic and wild-type tobacco by RNA-seq analysis. A total of 544 co-DEGs were detected between transgenic and wild-type tobacco. Functional assignments of the co-DEGs indicated that 33 reliable pathways are altered in transgenic tobacco plants. The most noticeable pathways are fatty acid metabolism, amino acid biosynthesis and metabolism, and plant hormone signal transduction. Results suggest that these enhanced processes are critical for the cell proliferation during multicellular trichome formation in transgenic plants. In addition, the transcriptional levels of homologues of trichome regulators in Rosids were not significantly changed, whereas homologues of genes (Wo and SlCycB2) in Asterids were significantly upregulated in Wov transgenic tobacco plants.ConclusionsThis study presents a global picture of the gene expression changes induced by Wov- gene in tobacco. And the results provided us new insight into the molecular processes controlling multicellular formation in tobacco. Furthermore, we inferred that trichomes in solanaceous species might share a common network.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2099-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.