Dynamic light scattering measurements on a symmetric polystyrene-polyisoprene diblock copolymer, Mw = 3.4 x 106, dissolved in neutral good solvents are reported. The solvents comprise mixtures of toluene and -chloronaphthalene, and the solvent compositions necessary to index-match the entire copolymer, the polystyrene block, and the polyisoprene block have been determined. The first of these, the zero average contrast (ZAC) condition, is particularly advantageous as it eliminates the cooperative diffusion mode, thus enhancing the relative amplitude of the elusive internal mode. However, the ZAC condition is sensitive to small changes in either solvent composition or temperature. In dilute and semidilute ZAC solutions, the correlation functions consistently show two modes. The slower mode is diffusive, with a diffusivity in close agreement with that measured by pulsed-field-gradient NMR; it is thus interpreted as the heterogeneity mode, which is visible due to chain-to-chain variations in composition.The faster mode is the internal mode, with a decay rate that is independent of scattering angle and decreasing with concentration; the concentration dependence is that observed for the viscoelastic longest relaxation time. For polymer concentrations within a factor of 2 of the order-disorder transition, the total scattered intensity increases markedly, which is attributed to the appearance of large-amplitude concentration fluctuations. It is also shown that in dilute solution, the heterogeneity and cooperative modes have comparable decay rates, which can complicate the interpretation of the diffusional second virial coefficient, k¿, for copolymers.
Low dielectric constant polymers offer many advantages in circuit performance, such as power dissipation, crosstalk and RC delay, when used as inter-layer dielectrics (ILDs). Silicon dioxide, a material commonly used as an ILD has a dielectric constant of 4.0. Organic polymers that have dielectric constant values ranging from 2.0 to 3.0 offer attractive alternatives to SiO2. However, it has been a great challenge to find organic polymers with thermal stability up to 450 °C. We have characterized thermal properties of polymers using thermal desorption analysis. isothermal TGA and FTIR to identify weak functional groups. In addition, we have measured the hardnesses and moduli of these polymers and found that the values are much lower than those of SiO2.Stress distributions in the interconnect system were analyzed using finite element modeling in order to understand potential reliability problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.