Long noncoding RNAs (lncRNAs) play critical roles in the pathogenesis of cardiovascular diseases, especially in myocardial infarction (MI). However, the underlying molecular mechanism of how lncRNA involves and affect MI still remains unclear. This study aimed to investigate the expression of lncRNA growth arrest‐specific transcript 5 (GAS5) and its effects on myocardial cells' proliferation, cell cycle, and apoptosis. The possible mechanisms involved in GAS5, calmodulin 2 (CALM2), and microRNA (miR)‐525‐5p were also explored. The messenger RNA (mRNA) level of CALM2, GAS5, and miR‐525‐5p in postmyocardial infarction (MI) and normal cells were examined by quantitative real‐time polymerase chain reaction (RT‐qPCR). Western blot analysis assay was conducted to detect the protein levels of CALM2. The changes of cell cycle/apoptosis and cell viability of post‐MI myocardial cells (PMMC) were determined by flow cytometry analysis and MTT (3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) assay after knockdown of GAS5 or CALM2, respectively. Dual luciferase reporter assay and RNA‐binding protein immunoprecipitation (RIP) assay were performed to verify the targeting relationship between miR‐525‐5p and GAS5, CALM2 in myocardial. Hypoxic preconditioning was performed in normal cells, which constructed a simulated MI environment, and the effect of GAS5 on cardiomyocyte apoptosis was detected. Our data showed that the expression of GAS5 and CALM2 in PMMC was significantly upregulated, while the expression of miR‐525‐5p was downregulated. Overexpression of GAS5 and CALM2 profoundly promoted the apoptosis of myocardial cell. However, the proliferation of myocardial cell was inhibited by the upregulation of GAS5 and CALM2. Moreover, GAS5 was proved to be the target of miR‐525‐5p and GAS5 downregulated the expression of miR‐525‐5p and CALM2. In addition, lncRNA GAS5 promotes MI, while CALM2 induced MI can be reversed by miR‐525‐5p. These data suggested that lncRNA GAS5 promoted the development and progression of MI via targeting of the miR‐525‐5p/CALM2 axis and it has the potential to be explored as a therapeutic target for the treatment of MI in the future.
Fibrosis caused by the increase in extracellular matrix in cardiac fibroblasts plays an important role in the occurrence and development of atrial fibrillation (AF). The aim of this study was to investigate the role of hsa-miR-4443 in AF, human cardiac fibroblast (HCFB) proliferation, and extracellular matrix remodeling. TaqMan Stem-loop miRNA assay was used to measure hsa-miR-4443 expression in patients with persistent AF (n=123) and healthy controls (n=100). Patients with AF were confirmed to have atrial fibrosis by late gadolinium enhancement. At the cellular level, after hsa-miR-4443 mimic and inhibitor were transfected with HCFBs, proliferation, apoptosis, migration, and invasion were analyzed. Lastly, hsa-miR-4443-targeted gene and transforming growth factor (TGF)-β1/α-SMA/collagen pathway were evaluated by dual-luciferase reporter assay and western blot, respectively. In patients with AF, hsa-miR-4443 decreased significantly and collagen metabolism level increased significantly. Logistic regression analysis showed that low hsa-miR-4443 level was a risk factor of AF (P<0.001). The receiver operating characteristic curve revealed that hsa-miR-4443 was useful for predicting AF (area under the curve: 0.828, sensitivity: 0.71, specificity: 0.78, P<0.001). In HCFBs, hsa-miR-4443 targeted thrombospondin-1 (THBS1) and downregulated TGF-β1/α-SMA/collagen pathway. The inhibition of hsa-miR-4443 expression promoted HCFB proliferation, migration, invasion, myofibroblast differentiation, and collagen production. The significant reduction of hsa-miR-4443 can be used as a biomarker for AF. hsa-miR-4443 protected AF by targeting THBS1 and regulated TGF-β1/α-SMA/collagen pathway to inhibit HCFB proliferation and collagen synthesis.
Objectives. Hyponatremia is a common complication of diabetes. However, the relationship between serum sodium level and diabetic peripheral neuropathy (DPN) is unknown. This study was aimed at investigating the relationship between low serum sodium level and DPN in Chinese patients with type 2 diabetes mellitus. Methods. A retrospective study was performed on 1928 patients with type 2 diabetes between 2010 and 2018. The multivariate test was used to analyze the relationship between the serum sodium level and the nerve conduction function. A restricted cubic spline was used to flexibly model and visualize the relationship between the serum sodium level and DPN, followed by logistic regression with adjustment. Results. As the serum sodium level increased, the prevalence of DPN had a reverse J-curve distribution with the serum sodium levels (69.6%, 53.7%, 49.6%, 43.9%, and 49.7%; P = 0.001 ). Significant differences existed between the serum sodium level and the motor nerve conduction velocity, sensory nerve conduction velocity, part of compound muscle action potential, and sensory nerve action potential of the participants. Compared with hyponatremia, the higher serum sodium level was a relative lower risk factor for DPN after adjusting for several potential confounders ( OR = 0.430 , 95 % CI = 0.220 – 0.841 ; OR = 0.386 , 95 % CI = 0.198 – 0.755 ; OR = 0.297 , 95 % CI = 0.152 – 0.580 ; OR = 0.376 , 95 % CI = 0.190 – 0.743 ; all P < 0.05 ). Compared with low-normal serum sodium groups, the high-normal serum sodium level was also a risk factor for DPN ( OR = 0.690 , 95 % CI = 0.526 – 0.905 , P = 0.007 ). This relationship was particularly apparent in male participants, those aged <65 years, those with a duration of diabetes of <10 years, and those with a urinary albumin − to − creatinine ratio UACR < 30 mg / g . Conclusions. Low serum sodium levels were independently associated with DPN, even within the normal range of the serum sodium. We should pay more attention to avoid the low serum sodium level in patients with type 2 diabetes mellitus.
Background Atrial fibrillation (AF) is a clinically common arrhythmia that affects human health. Myocardial fibrosis serves as an important contributor to AF. Recently, miRNA-1202 have been reported to be up-regulated in AF. However, the role of miRNA-1202 and its mechanism in myocardial fibrosis remain unclear. Methods Human cardiac fibroblasts (HCFs) were used to construct a fibrosis model by TGF-β1 induction. The expression of miR-1202 was measured by qRT-PCR. Cell proliferation was assessed by CCK-8 assays. Protein expression levels were measured by western blot. Collagen accumulation was measured by ELISA. The relationship between miR-1202 and nNOS was investigated by luciferase reporter assays. Results MiR-1202 expression was obviously increased in HCFs and was both time- and dose-independent. MiR-1202 could increase the proliferation and collagen I, collagen III, and α-SMA levels with or without TGF-β1. MiR-1202 could also increase TGF-β1 and p-Smad2/3 protein levels in comparison to the control group. However, they were obviously decreased after inhibitor transfection. MiR-1202 targets nNOS for negative regulation of HCFs fibrosis by decreasing cell differentiation, collagen deposition and the activity of the TGF-β1/Smad2/3 pathway. Co-transfection of miR-1202 inhibitor and siRNA of nNOS inhibited nNOS protein expression, thereby enhancing the HCFs proliferation. Furthermore, co-transfection of the miR-1202 inhibitor and siRNA of nNOS significantly promoted collagen I, collagen III, TGF-β1, Smad2/3 and α-SMA protein expression and Smad2/3 protein phosphorylation. These findings suggested that miR-1202 promotes HCFs transformation to a pro-fibrotic phenotype by targeting nNOS through activating the TGF-β1/Smad2/3 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.